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inspiré pendant mes trois années de thèse.
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l’Université de Paris-XI dédiée aux étudiants étrangers. Ceci m’a permis de faire le Mastère de Physique
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Le soutien de mes parents et de ma sœur a été très précieux. Je ne trouve pas de mots pour les
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Chapitre 1

Introduction (français)

Cette thèse étudie le transport électronique dans le graphène, le crystal monoatomique de carbone où
les électrons se déplacent comme si ils étaient sans masse. Les expériences faites dans cette thèse peuvent
être classifiées en deux régimes, un régime macroscopique où la longueur de cohérence de phase Lφ est
plus petite que la taille de l’échantillon L, Lφ < L et un régime mésoscopique où les paquets d’onde des
électrons interfèrent, (Lφ > L).

Avant d’introduire les expériences faites dans ces deux régimes différents, je vais présenter de façon
courte la physique du graphène et de la bicouche de graphène, deux matériels qui ont comme base un
réseau hexagonal d’atomes de carbone et qui donnent accès à deux physiques très différentes.

L’existence d’un crystal bidimensionnel comme le graphène était impensable il y a 70 ans. Selon Peirls
et Landau c’était impossible avoir un ordre cristallographique à longue portée à une ou deux dimensions.
Cet argument était basé sur l’approximation harmonique dans le cas Peierls et sur la théorie des transitions
de phase de deuxième ordre dans le cas de Landau. La théorie a été étendue plus tard par Mermin [80]
qui a mit l’argument de Peierls et Landau sur une base plus rigoureuse en prenant compte plusieurs
types d’interactions entre particules. L’impossibilité d’un ordre à longue distance est liée aux fluctuations
thermiques. A basse dimension les fluctuations thermiques donnent lieu à un terme divergeant qui fait
que le déplacement des atomes est de l’ordre de la distance inter-atomique ce qui rend les cristaux à deux
dimensions instables. Le graphène habitant dans un monde à trois dimensions, les fluctuations thermiques
sont dissipées dans la troisième direction ce qui le fait stable. Ce-ci ne contredit pas la conclusion de Peierls
et Landau qui se base sur un crystal bidimensionnel habitant dans un monde à 2 dimensions. Mais cette
stabilité a un coût. Le graphène se déforme hors son plan ce qui fait qu’il n’est pas complément plat.
Les ondulations observées dans le graphène ont une hauteur d’environ un nanomètre et une dimension
latérale de l’ordre de la dizaine de nanomètres. Remarquablement les déformations transversales de la
feuille de graphène sont douces et se produisent sans que la feuille se casse et sans que des défauts n’y
apparaissent.

Le graphène est construit à partir du carbone, qui est fait de 6 protons, 6 neutrons et 6 électrons.
Dans l’état de plus basse énergie, les 6 électrons sont dans la configuration 1s22s22p2. Deux électrons
remplissent l’orbital 1s qui est près du noyau et non significatif pour les réactions chimiques et 4 électrons
remplissent les orbitales extérieures 2s et 2p. Trois de ces électrons forment une liaison forte covalente σ
avec les atomes de carbone voisins et l’électron restant forme une liaison π. Il y a donc 1 électron π par
atome responsable des propriétés de transport électronique à basses énergies, et 3 électrons σ qui forment
des bandes d’énergie loin du niveau de Fermi. Ces électrons π dans le graphène ont un comportement très
particulier lié à la structure hexagonale dans laquelle les atomes de carbone s’arrangent (voir figure 2.1).
Cette structure n’est pas un réseau de Bravais car les atomes dans le crystal ne sont pas équivalents, ils
ne voient pas le même environnement. Les atomes dans le graphène sont ainsi classifiés en atomes de type
A et atomes de type B. Les atomes de type A ont un plus proche voisin au nord et deux dans le sud, leur
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4 CHAPITRE 1. INTRODUCTION (FRANÇAIS)

a1

a2

Atoms of type A Atoms of type B

e1e2

e3

N

S

Figure 1.1 – Structure en nid d’abeille du graphène. Les vecteurs a1 and a2 forment la maille élémentaire
du réseau triangulaire de Bravais avec deux atomes A and B par maille. e1, e2 and e3 déterminent les
plus proches voisins des atomes de type B.

positions étant déterminées par les vecteurs e1, e2 and e3 comme est montré dans la figure 2.1,

e1 =
a

2

(√
3ex + ey

)
(1.1)

e2 =
a

2

(
−
√

3ex + ey

)
(1.2)

e3 = −aey. (1.3)

Le réseau hexagonal peut être pourtant décomposé dans un réseau parallépipedique de Bravais avec une
base de deux atomes par maille (A et B) comme c’est montré dans la figure 2.1. Les vecteurs de maille
s’écrivent :

a1 =
√

3aex a2 =

√
3a

2

(
ex +

√
3ey

)
où a ≈ 0.14nm est la distance entre plus proches voisins. Les vecteurs de maille du réseau réciproque sont

a∗1 =
2π√
3a

(
ex −

ey√
3

)
a∗2 =

4π√
3a

ey

La première zone de Brillouin a une forme hexagonale (voir figure 2.2) avec deux points inéquivalents K
et K ′ qui ne peuvent pas être liés par des vecteurs du réseau réciproque. Ils sont associés aux vecteurs K
et K′. Les points équivalents à K et K ′ sont obtenus à partir de K et K ′ en faisant une translation du
vecteur dans l’espace réciproque G = γ1e

∗
1 + γ2e

∗
2 avec γ1 et γ2 des nombres entiers.

K± = ± 4π

3
√

3a
ex

Les propriétés électroniques les plus importantes du graphène peuvent être obtenues à partir de l’ap-
proximation de liaisons fortes. Wallace [75] a calculé pour la première fois la structure de bande du
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*
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K'K
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Figure 1.2 – Première zone de Brillouin avec les points cristallographiquement inéquivalents K et K′.

graphène en 1947 en démontrant le comportement semi-métallique inhabituel de ce matériau. Le Hamil-
tonien dans l’approximation des liaisons fortes qui considère des électrons qui sautent aux sites voisins
s’écrit [76] :

H = −t
∑
i∈A

3∑
j=1

(
a+
Ri
bRi+ej + b+Ri+ej

aRi

)
(1.4)

où aRi
(a+

Ri
) annihile (crée) un electron au vecteur Ri du sous-réseau A and bRi+ej (b+Ri+ej

) annihile (crée)

un électron du sous-réseau B au vecteur Ri + ej. ej désigne les plus proches voisins (2.1, 2.2 et 2.3 pour
les atomes de type B) et t ≈ 2.7eV est l’énergie de saut au plus proche voisin qui vient du recouvrement
entre fonctions d’onde des sites voisins. Le saut entre deuxièmes plus proches voisins n’est pas considéré
car le recouvrement entre leur fonctions d’onde est t′ ≈ 0.1eV , ce qui affecte la relation de dispersion
seulement à des énergies de l’ordre de 100meV .

La diagonalisation de ce Hamiltonien donne la relation de dispersion suivante :

εq = ±

√√√√√
∑

j

cos(q · ej)

2

+

∑
j

sin(q · ej)

2

(1.5)

les signes positif et negatif correspond à la bande d’électrons et des trous, qui sont représentés dans la
figure 2.3. Elles se touchent aux points K et K′ appelés points de Dirac. Le gap entre la bande de valence
et la bande de conduction est donc nul. De plus, comme il y a autant d’électrons que d’atomes de carbone,
la bande de valence est pleine et la bande de conduction est vide, ce qui fait que le niveau de Fermi tombe
juste au point de contact entre les deux bandes à énergie nulle.

Quand on ne considère que des excitations à basse énergie (E < t ≈ 2.7eV ) le Hamiltonien 2.4 dans
l’espace de Fourier peut être développé autour de K et K ′, en obtenant un Hamiltonien de la forme

Heff
α=± = α~vFκ · σ,

où κ est le vecteur d’onde et σ les matrices de Pauli. Ce Hamiltonien est le celui d’une particule relativiste
sans masse, ce qui révèle le caractère relativiste des électrons dans le graphène. Il y a deux Hamiltoniens
effectifs (α = + et α = −) correspondant aux points K et K ′. La relation de dispersion associée à chaque
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E
n
er

g
y

electrons

holes

Figure 1.3 – Structure de bandes du graphène déduite en considérant seulement le saut aux sites voisins.
La bande d’électrons et la bande de trous se touchent aux points de Dirac K and K’. Le zoom montre la
relation de dispersion à basses énergies. (D’après [76]).

un de ces Hamiltoniens est linéaire, comme est représenté dans le zoom de la figure 2.3,

εα(κ) = ±3

2
ta|κ| = ±~vF |κ| (1.6)

où vF est la vitesse de Fermi, la vitesse de groupe des électrons près de la surface de Fermi

vF =
3ta

2~
≈ 1× 106m/s. (1.7)

Toutes les particularités du graphène sont liées à sa structure des bandes. Les caractéristiques les plus
importantes peuvent être résumées comme :

1. La bande de valence et la bande de conduction se touchent à énergie nulle en deux points K et
K ′ qui sont appelés vallées et qui sont cristallographiquement inéquivalents. L’inéquivalence des
points K et K ′ n’est pas lié à la présence de deux types d’atomes A et B par maille mais plutôt
au réseau de Bravais. Le graphène est donc un semi-conducteur à gap nul avec deux vallées. Il peut
être aussi considéré comme un métal dans lequel la bande de valence et de conduction forment une
seule grande band mais dont la densité d’états est nulle au niveau de Fermi.

2. Près du niveau de Fermi la relation de dispersion des électrons est comme celle des Fermions de
Dirac sans masse, ε = ±

√
p2c∗2 +m∗2c∗2 = ±pc∗ avec une masse effective nulle m∗ = 0 et une

vitesse c∗ =
√

3ta/2~ qui est lié à la constant de réseau a ≈ 0.25nm et l’enérgie de saut t ≈ 3eV .
La vitesse de groupe des électrons dans le graphène c∗ est 300 fois plus petite que la vitesse de la
lumière.

3. Près du niveau de Fermi, il y a une symétrie entre la bande de valance et la bande de conduction.
Elle est appelée symétrie électron-trou.
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a) b)

e
e1

e2

Figure 1.4 – Les deux possibilités pour l’empilement de deux couches de graphène. Noire représente
la couche en dessous et blanc la couche en dessus. Les cercles représentent les atomes de type A, et les
triangles les atomes de type B. En a) la couche de en dessus est translaté de e1 par rapport à la couche
de en dessous. En b) la couche de en dessus est translaté de e2. La maille élémentaire est représenté en
a). La bicouche de graphène a 4 atomes par maille. (D’après [76]).

L’étude du graphène nous amène facilement à la bicouche de graphène qui est aussi un matériel très
intéressant. C’est le seul matériel où les propriétés semi-conductrices peuvent être contrôlées par un effet
de champ. La bicouche de graphène a un gap (contrairement à la monocouche) qui peut être modulé en
appliquant un voltage bias entre les deux couches de graphène, mais surtout la bicouche de graphène donne
accès à une physique très différente par rapport à celle du monolayer, avec une relation de dispersion qui
est quadratique et non pas linéaire, un facteur de diffusion différent, une densité d’états différente et une
quantification des niveaux d’énergie différente en présence d’un champ magnétique.

La bicouche de graphène consiste de deux couches empilées de graphène séparées de d ≈ 2.4a =
0.34nm. Les couches sont translatées l’une par rapport à l’autre de e1 ou e2 (2.1 et 2.2), comme s’est vu
dans la figure 2.4 La structure des bandes de la bicouche peut être déduite en utilisant un Hamiltonien
dans l’approximation des liaisons fortes comme a été fait pour le graphène, [77],

H = −γ0

∑
<i,j>m

(
a+
m,ibm,j + h.c.

)
− γ1

∑
j

(
a+

1,ja2,j + h.c.
)

− γ3

∑
j

(
a+

1,jb2,j + a+
2,jb1,j + h.c.

)
− γ4

∑
j

(
b+1,jb2,j + h.c.

)
où am,i annihile an eléctron de type A sur la couche m = 1, 2 dans le site Ri et bm,j annihile un eléctron de
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Figure 1.5 – Réseau cristallin de la bicouche. Les cercles foncés représentent les atomes de type A et les
cercles claires les atomes de type B. D’après [77].

type B dans le site Rj avec j le plus proche voisin de i. γ0 est l’énergie de saut dans une couche t ≈ 2.8eV ,
γ1 = t⊥ ≈ 0.35eV est l’energie de saut entre l’atome A1 et l’atome A2 (voir figure 2.5), γ3 ≈ 0.3eV est
l’énergie de saut entre l’atome A1 et l’atome B2 (ou l’atome A2 et l’atome B1) et γ4 ≈ 0.2eV est l’énergie
de saut entre B1 et B2. Dans l’espace de Fourier à basse énergie, le vecteur d’onde q peut être développé
autour de ±K comme dans la monocouche, ce qui donne le Hamiltonien effective suivant

Heff =


−V ~vFk 0 3γ3ak

∗

~vFk∗ −V γ1 0
0 γ1 V ~vFk

3γ3ak 0 ~vFk∗ V

 (1.8)

où k = kx + iky est un nombre complexe et V est la moitié du potentiel appliqué entre les deux couches.
Si le potentiel appliqué entre les deux couches est nul, V = 0 et γ3, vFk << γ1, les états de haute énergie
peuvent être éliminés de façon perturbatrice et le Hamiltonien effective se réduit à :

Heff =

(
0

~2v2F k
2

γ1
+ 3γ3ak

∗

~2v2F k
∗2

γ1
+ 3γ3ak 0

)
(1.9)

Si γ3 = 0 le Hamiltonien effective 2.12 a les valeurs propres

εk,± ≈ ±
~2v2

Fk
2

t⊥
= ±~2k2

2m∗
,

avec m∗ ≈ 0.054me. Cette relation de dispersion corresponde à deux bandes paraboliques qui se touchent
à ε = 0 comme c’est montré dans la figure 2.6. Deux bandes additionnel commencent à ±t⊥. Quand γ3 6= 0
le spectre est différent à basse énergie. En lieu de deux bandes qui se touchent à k = 0, il y a quatre cônes
de Dirac à k = 0 et à trois points équivalents avec un moment finie. Une tension appliquée entre les deux
couches induit un gap qui dépend de la tension appliquée.

Les différences et similitudes principales entre la structure de bandes de la bicouche et de la monocouche
de graphène peuvent être résumées comme :

1. Dans la bicouche de graphène, la bande de valence et la bande de conduction se touchent entre elles
à énergie nulle comme pour la monocouche.
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Figure 1.6 – Structure des bandes de la bicouche de graphène quand V = 0. Il y a deux bandes qui
commencent à ε = 0 et deux bandes additionnelles à ±t⊥

2. Dans l’approximation γ3 = 0 (en négligeant le saut entre les atomes A1 et B2 (figure 2.5)), la
relation de dispersion de la bicouche est quadratique et non pas linéaire comme est le cas dans la
monocouche.

3. Dans la bicouche la bande de valence et la bande de conduction sont aussi symétriques mais elles se
touchent dans un seul point k = 0 contrairement à la monocouche (dans l’approximation γ3 = 0).

4. La bicouche de graphène ouvre la possibilité d’un semi-conducteur à gap accordable.

La densité d’états et le coefficient de diffusion ont aussi une forme très différente dans ces deux
systèmes. La densité d’états ρ(EF ) compte le nombre d’états per unité d’aire A dans les alentours du
niveau de Fermi. Elle peut être calculé à partir du nombre d’états N sous EF ,

ρ(EF ) =
1

A

∂N

∂E

avec

Nc = g
∑
k

k≤kF

≈ gA
∫
k≤kF

d2k

(2π)2
=
gA

4π2
2π

∫ kF

0
dkk =

gA

4π
k2
F

cette expression compte pour n’importe quel système bidimensionnel (g est la dégénérescence due aux
degrés de libertés internes). Dans le cas de la monocouche et de la bicouche on a respectivement

EML = ~vFkF EBL =
~2k2

F

2m∗

donc k2
F = E2

ML/~2v2
F pour la monocouche et k2

F = EBL2m∗/~2 pour la bicouche, ce qui donne

ρ(EF )ML =
2EF
π~2v2

F

et ρ(EF )BL =
2m∗

π~2
(1.10)

où on a prit g = 4 pour le monocouche et le bicouche (dégénérescence de spin et de vallée). La densité
d’états est linéaire en énergie pour la monocouche et c’est une constante pour la bicouche, comme pour
la plupart des systèmes bidimensionnels.
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Le coefficient de diffusion peut être écrit en termes du libre parcours moyen, D = vF le/d avec d la
dimension du système, ou en terme de la densité d’états,

D =
σ

e2ρ(EF )

On trouve expérimentalement que la conductivité σ est proportionnel à k2
F pour la monocouche et la

bicouche 1. Donc
σML ∝ E2

F , σBL ∝ EF
et

DML ∝ EF ∝ kF , DBL ∝ EF ∝ k2
F .

Le coefficient de diffusion a donc une dépendance différente en le vecteur d’onde pour la monocouche et
la bicouche due à la densité d’états différents de ces deux systèmes.

Une autre différence remarquable entre la monocouche et la bicouche repose sur la vitesse de Fermi.
Pour des particules massives la vitesse de Fermi change avec l’énergie, comme c’est le cas pour la bicouche

vBL =
~k
m∗

=

√
2E

m∗
.

Dans la monocouche dans autre côté, les électrons ont toujours la même vitesse peu importe leur énergie
ou moment,

vML ≈ 1× 106m/s.

En présence d’un champ magnétique, la quantification des niveaux d’énergie est différente pour la
monocouche et pour la bicouche. Elle a une dépendance en

√
n pour la monocouche et en n pour la

bicouche,

EML = vF
√

2~eBn
EBL = ~ωcn

avec ωc = eB/m∗.
Maintenant qu’on a resumé les différentes propriétés de transport de la monocouche et la bicouche,

on peut procéder à la description de différentes expériences réalisées au cours de cette thèse. Comme
a été mentionné au début, ces expériences peuvent être classifiées dans un régime macroscopique et
un régime mésoscopique. L’expérience faite dans le régime macroscopique correspond à des mesures de
magnétorésistance à des temperatures ≥ 1K telles que les echantillons ne sont pas cohérents quantique-
ment. Elles sont été faites dans la monocouche et la bicouche [86] et elles nous ont donné des informations
sur le type d’impuretés qui limitent le transport dans le graphène, un sujet assez controversé dans ce
moment.

La figure 1.7 montre la magnétorésistance à deux fils mesuré pour la monocouche et la bicouche. A
partir de ces mesures on a pu extraire le rapport entre les deux temps caractéristiques de transport du
système. Le temps de transport, qui détermine la relaxation du courant et qui apparâıt dans l’expression
de conductivité de Drude, et le temps élastique, qui est le temps de vie d’un état électronique.

Le temps de transport τtr a été déduit à partir de la magnétorésistance à bas champ magnétique
(figure 1.7), qui a une dépendance quadratique avec le champ magnétique et τtr,

ρ ∝ (ωcτtr)
2.

Le temps élastique a été déduit des oscillations de Shubnikov-de Haas à plus forts champs magnétiques,
ou la résistivité à deux points s’écrit

ρ ∝ exp

(
− π

ωcτe

)
cos

(
EF
~ωc

)
1. Plus précisément la conductivité a la forme ≈ ln2(k) comme on verra dans le chapitre 3
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Figure 1.7 – Mesures de magnétorésistance pour la monocouche (haut) et la bicouche (bas) en dehors
du point de Dirac. La résistance de contact a été soustraite dans le deux cas.
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Figure 1.8 – Dépendance en kF du τtr et du rapport τtr/τe. La figure de gauche montre des donnés
provenant des monocouches mesurés au groupe de Physique Mésoscopique (A et C) et au CEA Saclay par
Keyan Bennaceur (D et E). La figure de droit montre des données provenant de la bicouche. Les lignes
continues correspondent au modèle théorique qui considère un particule de Dirac qui se diffuse sur une
impureté forte de courte portée. Le rapport τtr/τe est près de 1.8 pour toutes les échantillons qu’on a
étudié, comme c’est indiqué par les lignes pointillés.

Dans le cas de la monocouche ωc depénd de kF (ωc = eB/(E/v2
F )), donc pour déduire τtr, kF est déduit

d’abord à partir de la période des oscillations de Shubnikov de Haas. τe est déduit de l’amortissement
exponentiel des oscillations avec le champ magnétique.

Une avantage remarquable de cette méthode pour déduire les temps caractéristiques repose sur le fait
que la résistance de contact n’intervient pas dans le calcul. Les calculs de τe et τtr et leur lien avec la
nature des impuretés dans le graphène a été fait par Miguel Monteverde.

On a trouvé une dépendance différente de ces temps en kF pour la monocouche et la bicouche comme
est montré dans la figure 1.8. Ceci montre que la physique de ces deux systèmes est assez différente. On a
trouvé aussi un rapport τtr/τe ≈ 1.8, ce qui est signature d’une diffusion de courte portée (comme cela est
expliqué au début du chapitre 3). Les lignes continues correspondent à un modèle qui considère la diffusion
d’une particule de Dirac (sans masse dans le cas de la monocouche et massive pour la bicouche) sur une
impureté forte de courte portée. Le modèle explique très bien nos résultats en indiquant que le mécanisme
principal de diffusion dans nos échantillons est des défauts neutres, dont l’énergie est comparable à la
largeur de bande ≈ eV et de courte portée (R < λF ). Des possibles candidats en étant des lacunes ou des
adatomes.

Dans le régime mésoscopique on s’est intéressé aux fluctuations universelles de la conductance et à
l’effet de proximité avec un supraconducteur. Les fluctuations universelles de la conductance sont la signa-
ture la plus importante du transport cohérent dans un système. Dans un système cohérent, la conductance
fluctue en fonction d’un paramètre externe comme le champ magnétique, l’énergie de Fermi ou le désordre.
Quand on fait varier le champ magnétique traversant l’échantillon, l’énergie de Fermi ou le désordre, la
phase entre deux trajectoires électroniques qui interférent est modifié ce qui se traduit par une variation
de la conductance. Les fluctuations sont censées à être reproductibles et universelles avec une amplitude
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Figure 1.9 – L’amplitude des fluctuations de la conductance est comparée à la résistance en fonction
de la tension de grille. Les fluctuations en fonction de la tension de grille (symboles pleines) sont plus
grandes près du point de Dirac pour la monocouche et la bicouche (figures c) et d)). Les bares d’erreur
sont la déviation standard de la différence entre deux balayages. L’amplitude des fluctuations en fonction
de la tension de grille Vg change de façon similaire à la résistance. Les fluctuations en fonction du champ
magnétique (triangles vides) ne changent pas énormément avec la tension de grille.

qui ne dépend pas du désordre ou de la taille de l’échantillon. Elles sont aussi ergodiques, les fluctuations
en fonction de l’énergie de Fermi, du champ magnétique ou du désordre sont prédites avoir la même am-
plitude. Leur fonction de corrélation fait intervenir l’énergie de Thouless pour les fluctuations en fonction
de l’énergie, ETh = ~D/L2

min (avec D le coefficient de diffusion et Lmin = min(L,LT , Lφ) la longueur
caracteristique sur laquelle ont lieu les interferences quantiques), et elle suit φ0/S pour les fluctuations en
fonction du champ magnétique. (φ0 est le quantum de flux et S la surface de l’échantillon perpendiculaire
au champ magnétique parcourue par les trajectoires cohérentes). Dans nos expériences sur la monocouche
et la bicouche [87], on a trouvé que les fluctuations de la conductance étaient non-ergodiques. L’amplitude
des fluctuations en fonction de l’énergie de Fermi dépend de l’énergie de Fermi alors que les fluctuations
en fonction du champ magnétique n’en dépendent pas, comme c’est montré dans la figure 1.9

On a trouvé également que l’énergie de corrélation des fluctuations en fonction de l’énergie de Fermi
correspond bien à l’énergie de Thouless et que le champ magnétique de corrélation des fluctuations en
fonction du champ magnétique est en accord avec φ0/S comme c’est prédit par la théorie pour les systèmes
diffusifs (voir figure 1.10)

On a étudié aussi la conductance de deuxième ordre en fonction du champ magnétique. Il correspond
au terme non linéaire qui apparâıt dans la relation I-V, I = G1V +G2V

2. Ce terme est différent de zéro
dans un échantillon mésoscopique quand la symétrie par inversion spatiale est absente, ce qui est le cas
du graphène grâce aux impuretés. La présence d’un champ magnétique fait que les dipôles qui se forment
autour des impuretés (qui sont liés à la tension de polarisation imposée), tournent dans une direction
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Figure 1.10 – Haut : Energie de corrélation des fluctuations de la conductance dans la monocouche
et la bicouche. Les points représentent les énergies de corrélation extraits des donnés. La ligne continue
représente 5ETh. Bas : champ magnétique de corrélation pour la monocouche (triangles) et la bicouche
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bicouche.
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différente dépendant du signe du champ magnétique. La densité électronique gagne donc une composante
impaire avec le champ magnétique qui change localement le potentiel. En conséquence, la conductance G2

qui dépend du potentiel local (comme est montré dans le chapitre 4) acquiert une composante impaire en
champ magnétique (contrairement à la conductance linéaireG1 qui est symétrique en champ magnétique et
qui suit les relations de Onsager). La figure 1.11 montre la partie symétrique et la partie antisymétrique
de la conductance de second ordre G2 de la monocouche près et loin du point de Dirac. On voit que
l’amplitude de la partie antisymétrique est plus importante dans le premier cas. La figure 1.12 montre le
rapport entre la partie antisymétrique de la variance de G2 et la partie symétrique à différents tensions de
grille. La théorie pour les systèmes diffusifs prédit que ce rapport doit suivre γ/g avec g la conductance
adimensionnelle et γ une constante qui quantifie l’interaction entre les électrons (γ = 0 si il n’y a pas
d’interaction γ = 1 si l’interaction est forte). On a pu calculer γ pour le graphène dans les différents dopages
explorés avec la tension de grille (comme est expliqué dans le chapitre 4) et on a trouvé que γ ≈ 1 dans
toute la gamme de tension de grille explorée. La rapport r = δGAS2 /δGS2 trouvé expérimentalement suit
bien 1/g avec un facteur 7 qu’on attribue au rapport d’aspect de l’échantillon. Ceci constitue la première
mesure de la conductance de deuxième ordre dans un échantillon mésoscopique diffusif .



16 CHAPITRE 1. INTRODUCTION (FRANÇAIS)

Une deuxième expérience faite dans le régime mésoscopique a été l’induction d’un supercourant dans
le graphène par effet de proximité. On s’attend à ce que la supraconductivité par effet de proximité dans
le graphène soit modifiée par rapport à celle d’un matériau classique à cause de sa structure électronique
où les bandes de valence et de conduction se touchent en un point à demi remplissage. Ceci fait que le pro-
cessus qui rend possible le passage de paires de Cooper à travers le graphène, appelé réflexion d’Andreev,
se passe différemment. Dans le graphène l’électron et le trou qui forment la paire d’Andreev peuvent
appartenir à des bandes différentes. Ce phénomène, qui est censé à avoir une signature expérimentale a
été exploré par plusieurs groupes sans que aucun signe ait été observé. Ceci est du aux poches d’électrons
et trous qui se forment dans l’échantillon quand on est près du point de Dirac dont l’énergie est donc mal
définie à l’échelle du gap supraconducteur.

Dans notre expérience on n’a pas vu une signature sur l’effet de proximité lié à la structure de bandes du
graphène, mais on a pu induire la supraconductivité dans ce matériel de façon progressive [88]. En faisant
plusieurs étapes de recuits sur l’échantillon, qui consistait en une feuille de graphène avec deux électrodes
supra, on a réussi a augmenter progressivement le coefficient de transmission entre les électrodes et le
graphène en ayant à la fin un supercourant traversant le graphène. La figure 1.13 montre l’évolution de la
résistance en fonction de la tension de grille après les différents recuits. Chaque recuit consistait d’un fort
courant (de ≈ 3mA à ≈ 11mA) qui traversait l’échantillon pendant quelques dizaines de seconds. On voit
sur la figure qu’après le deuxième recuit le point de Dirac se déplace à une tension de grille dont on a plus
accès, et qu’après les différents recuits la résistance de l’échantillon baisse. En étant celle-ci une mesure à
deux contacts on a conclu que la résistance de contact baisse après chaque recuit. Les fluctuations qu’on
observe sur les premières courbes sont reproductibles et correspondent à des fluctuations universelles
de la conductance. Dans la deuxième figure on voit l’évolution de la résistance différentielle après les
différents recuits. La résistance baisse et des anomalies liées à des réflexions d’Andreev apparaissent après
le premier et le deuxième recuit. Après le troisième recuit on observe une résistance nulle à tension nulle
qui apparait. La figure 1.14 montre le supercourant induit modulé par un champ magnétique. Il a la forme
d’un spectre de diffraction de Fraunhoffer, qui est caractéristique d’une jonction rectangulaire supra-métal
normal-supra. Le fit de cette dépendance du supercourant avec le champ magnétique en tenant compte de
la taille de l’échantillon, nous a confirmé que le supercourant observé venait d’un vrai effet de proximité
induit sur le graphène et non pas de grains supraconducteurs qui auraient pu migrer pendant le recuit.

On s’est intéressé aussi à la supraconductivité de proximité dans le graphène induit par des nanopar-
ticules superconductrices. Feigel’man et al. [47] ont montré que couvrir le graphène avec des ı̂lots super-
conducteurs peut induire un état supraconducteur macroscopique dans le graphène avec une température
critique de l’ordre du Kelvin pour une certaine distance entre les ı̂lots. Le graphène, en ayant un coefficient
de diffusion important (D ≥ 102cm2/s) et une densité électronique faible (1012/cm2), n’est pas susceptible
à un effet de proximité inverse puisque ∆0 ≥ Ggraphδ (∆0 est le gap supraconducteur des nanoparticules
et δ l’espacement entre niveaux, δ ≈ 1/L2).

Une image optique d’un des échantillons analysés, fabriqué par Alik Kasumov est montrée dans la
figure 1.15. Une feuille de graphène est couverte avec des nanoparicules d’Indium de taille ≈ 5nm et
espacés de ≈ 50nm. Une mesure à deux points faite avec des électrodes en Pd/Ag déposés précédemment
au dépôt des nanoparticules nous a révélé que en baisant la température, l’échantillon devient isolant,
comme le montre la figure 1.16. La conductance suit une loi d’activation G ∝ exp(−Eact/KBT ) avec une
énergie d’activation Eact = 0.2meV qui est proche du gap supraconducteur de l’Indium et aussi du gap
spectral Eg prédit par Feigel’man, comme on verra dans le chapitre 5. On a observé que la conductance
différentielle présente un gap qui a tendance à se fermer avec le champ magnétique et aussi en appliquant
une tension de grille, comme c’est montré dans la figure 1.17.

Cette expérience nous a questionné s’il serait possible induire une transition métal-isolant dans le
graphène en changeant la concentration des porteurs de charge avec la tension de grille, ou encore mieux
une transition isolant-supraconducteur. Deux dimensions est la dimension critique pour la localisation et
la supraconductivité, comme cela a été observé expérimentalement par plusieurs groupes qui ont étudié
des filmes minces supraconductrices qui deviennent isolants quand on réduit l’épaisseur des filmes ou en



17

- 1 0 0 1 0 2 0 3 00

1

2

3

4

 

 

A f t e r  a n n e a l i n g  3

R(
Ω

)

V g ( V )

B e f o r e
a n n e a l i n g

A f t e r  
a n n e a l i n g  1

A f t e r  a n n e a l i n g  2

-0.5 0.0 0.5
0

500

1000

1500

2000

3

2

1

 

 

dV
/d

I
)

V(mV)

0

Figure 1.13 – Gauche : Résistance vs Vg après les différentes étapes de recuit (les courbes n’ont pas
été décalés verticalement). Après le dernier recuit un supercourant a été induit dans le graphène. (Cette
courbe a été mesurée avec un champ magnétique de 200G qui détruit l’effet de proximité, on mesure
donc la résistance intrinsèque de l’échantillon). Droit : résistance différentielle en fonction de la tension
de polarisation après les différents recuits.
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Figure 1.15 – Gauche : Image MEB de l’échantillon avant le dépôt des nanoparticules d’Indium. Droit :
Zoom sur une région après le dépôt des nanoparticules. Les nanoparticules formées sont plus grandes sur
le graphène que sur le substrat.
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thermique avec une énergie d’activation de 0.2meV
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Figure 1.17 – Gauche : Conductance différentielle du graphène avec les nanoparticules d’Indium à des
champs magnétiques différents. Le champ magnétique critique correspond à un quantum de flux traversant
une nanoparticule. Droit : Conductance différentielle à des tensions de grille différentes

présence d’un champ magnétique. On se demande si une tel transition serait possible dans le graphène
dans un échantillon moins désordonné que ceux mesurés jusqu’à maintenant. Des recuits sur l’échantillon
ou une méthode moins violent pour le dépôt des nanoparticules pourrait peut être donner réponse à cette
question.



Chapitre 2

Introduction

This thesis studies some aspects of quantum electronic transport in graphene, the two dimensional
crystal made of carbon where conduction electrons behave as massless relativistic particles. Experiments
done in this thesis can be classified in two different regimes, a macroscopic regime where there is no
quantum interference effects between electrons (the phase coherence length Lφ is smaller than the size of
the sample L, Lφ < L) and a mesoscopic regime, where electron’s wave packets interfere, (Lφ > L).

Experiments we have done in the macroscopic regime correspond to magnetoresistance measurements
up to moderate magnetic fields (H ≤ 5T ) where Shubnikov-de Haas oscillations are present. This pheno-
mena is independent of the size of the sample and it is then macroscopic. Magnetoresistance measurements
provide the characteristic transport times in graphene, as is explained in chapter 4, which let us elucidate
the nature of scatterers in graphene. Comparison of our experimental results for the characteristic trans-
port times with theoretical predictions let us deduce that the main scattering mechanism in our graphene
samples is due to strong short range scatterers and not charged impurities as other works suggest. Likely
candidates are vacancies, ad-atoms or short range ripples. Our results don’t exclude completely the pre-
sence of long-range charged impurities, but their contribution to the characteristic transport times in our
samples seems to be negligible. This is still a subject of controversy and it is of enormous relevance, since
knowing the main scattering process in graphene opens the possibility of improving mobility, a parameter
that depends weakly on temperature in graphene and that makes the one atom thick layer a competitive
material with respect to doped bulk semiconductors. Semiconductors like InSb exhibit room temperature
mobilities up to ≈ 77 000cm2V −1s−1 when they are undoped [79]. In graphene, mobility might be impro-
ved to ≈ 100 000cm2V −1s−1 even at high electronic densities (n > 1012cm−2) by reducing the interaction
with impurities.

In the mesoscopic regime, we have studied the superconducting proximity effect. When a normal
metal is connected to two superconductors, superconducting features can be induced in the normal metal
if it is phase coherent (Lφ > L). Cooper pairs are transfered from one superconductor to the other
thanks to a process called Andreev reflection. The particular band structure of graphene brings some
specificities to this process, as it will be seen in chapter 6. In our experiment even if we were not able
to see these particularities (as the other groups that have tried so far) we have successfully induced a
superconducting proximity effect in graphene, by gradually tuning the transparency between graphene
and the superconducting electrodes. In the mesoscopic regime, we have also studied universal conductance
fluctuations (UCF), the main signature of phase coherence transport in a system. Correlation functions
of UCF depend on the diffusion coefficient which has a specific dependence on the electronic density
in graphene, as will be seen in chapter 5. We have found a specific experimental correlation function
associated to the electronic density dependence of the diffusion coefficient of graphene. We have compared
with measurements on a bilayer graphene, finding a different correlation function associated to its different
diffusion coefficient. We have observed that for the monolayer the electronic density dependence of the
amplitude of conductance fluctuations is different when they are induced by a modulation of electronic
density and when they are induced by a modulation of magnetic field. Thus conductance fluctuations in

21
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graphene are non-ergodic. We have also analyzed the second harmonic of conductance fluctuations. This
is a very interesting term since it gives information about the e-e interaction in a system. We have found,
thanks to the tunability of graphene’s conductance, that it decreases with conductance, in accordance
with theory. This constituted the first measurement of second order conductance fluctuations in a diffusive
system. In the following, I will discuss in detail the physics of the monolayer and the bilayer graphene.
These two similar systems, fabricated with the same exfoliation technique, gave us access to two different
physics. The first, of relativistic massless particles with a linear dispersion relation, and the second, of
massive Dirac particles with a quadratic dispersion relation like most systems.

A bidimensional crystal like graphene was thought impossible 70 years ago. According to Peierls and
Landau, there could not be a crystalline long range order in one or two dimensions. Their argument was
based on the harmonic approximation in the case of Peierls and on the theory of second order phase
transitions in the case of Landau, and it was later extended by Mermin [80] who put Peierls and Landau’s
argument on a rigorous basis for a large class of interparticle interactions. The impossibility of a long
range order resided in thermal fluctuations. Thermal fluctuations at low dimensions lead to a displacement
of atoms of the order of the interatomic distance, making 2D crystals unstable, to the point of melting.
But since graphene lives in a three dimensional world, thermal fluctuations can be dissipated in the
third dimension making the two dimensional crystal stable. This doesn’t contradict Peierls and Landau’s
conclusion since it was based on a bidimensional crystal living in a bidimensional world. The cost of
this stability is a deformation in the third direction, which makes graphene not perfectly flat. Observed
ondulations in graphene are on average ≈ 1nm high and ≈ 10nm long, they are smooth and surprisingly
they don’t create any defects in the crystal.

Graphene is made of carbon, which is built from 6 protons, 6 neutrons and 6 electrons. In the atomic
ground state, the 6 electrons are in the configuration 1s22s22p2. Two electrons fill the inner shell 1s which
is close to the nucleus and irrelevant for chemical reactions and 4 electrons occupy the outer shell of 2s and
2p orbitals. Three of these electrons form strong covalent σ bonds with the neighbor carbon atoms and
one electron yields π bonds. There is then 1 π electron per atom responsible for the electronic properties
at low energies, and 3 σ electrons that form energy bands far from the Fermi level and that are responsible
for the honeycomb lattice. The π electrons have a particular behavior, which comes from the hexagonal
structure in which carbon atoms are arranged (figure 2.1). This structure is not a Bravais lattice since
atoms in the crystal are not equivalent (they don’t see the same environment) they are then classified in
atoms of type A and atoms of type B. Atoms of type A have a nearest neighbor in the north and two in
the south. Atoms of type B on the other hand have two nearest neighbors in the north and one in the
south. Nearest neighbors of A are determined by the vectors e1, e2 and e3 shown in figure 2.1,

e1 =
a

2

(√
3ex + ey

)
(2.1)

e2 =
a

2

(
−
√

3ex + ey

)
(2.2)

e3 = −aey. (2.3)

The hexagonal (honeycomb) lattice can however be decomposed in a triangular Bravais lattice with a
basis of two atoms per unit cell (A and B) as is shown in figure 2.1. Unit lattice vectors a1 and a2 can
be written like

a1 =
√

3aex a2 =

√
3a

2

(
ex +

√
3ey

)
where a ≈ 0.14nm is the distance between nearest neighbors. The reciprocal lattice vectors are given by

a∗1 =
2π√
3a

(
ex −

ey√
3

)
a∗2 =

4π√
3a

ey

The first Brillouin zone has an hexagonal form (figure 2.2) with two inequivalent points K and K ′ that
cannot be related using reciprocal lattice vectors and that have the associated vectors K+ and K−.
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a1

a2

Atoms of type A Atoms of type B

e1e2

e3

N

S

Figure 2.1 – Honeycomb lattice structure of graphene. Lattice vectors a1 and a2 define a triangular
Bravais lattice with two atoms A and B per unit cell. e1, e2 and e3 indicate the nearest neighbors of type
B atoms.

Other equivalents points can be obtained from K and K′ with a translation of the reciprocal vector
G = γ1e

∗
1 + γ2e

∗
2 with γ1 and γ2 integers.

K± = ± 4π

3
√

3a
ex

The most important electronic properties of graphene can be obtained using the tight binding ap-
proximation. It was Wallace [75] who calculated for the first time the band structure of graphene and
showed the unusual semimetallic behavior of this material. In the following, I discuss the deduction of the
dispersion relation using the tight binding hamiltonian as is done in the lecture notes of the course “2D
electrons in strong magnetic fields” by Marc Goerbig and Pascal Lederer [76].

It is considered a tight binding hamiltonian for electrons that can hop to the nearest neighbor atoms,

H = −t
∑
i∈A

3∑
j=1

(
a+
Ri
bRi+ej + b+Ri+ej

aRi

)
(2.4)

where aRi
(a+

Ri
) annihilates (creates) an electron at the site Ri of the sublattice A and bRi+ej (b+Ri+ej

)

annihilates (creates) an electron of sublattice B at the site Ri +ej. ej denotes the nearest neighbor atoms
(2.1, 2.2 and 2.3) and t ≈ 2.7eV is the nearest neighbor hopping energy and it comes from the overlap
between wavefunctions of neighbor sites. Next nearest neighbor hopping is not considered since overlap
between wavefunctions in that case is t′ ≈ 0.1eV and affects dispersion relation only at energies of the
order of 100meV . The dispersion relation for graphene at low energies is therefore deduced using the
relation 2.4 and the following Fourier transformation

aRi
=
∑
q

eiq·Riaq bRi+ej =
∑
q

e−iq·(Ri+ej)bq
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K'K
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1
a

Figure 2.2 – First Brillouin zone with the inequivalent points K and K′.

which permits to write the hamiltonian 2.4 like

H =
∑
q

(
a+
q , b

+
q

)
Hq

(
aq
bq

)

where

Hq =

(
0 h(q)

h(q) 0

)
with h(q) ≡ −t

∑
j

eiq·ej . (2.5)

The matrix Hq can be written in terms of the Pauli matrices,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

Hq = −t
∑
j

(cos(q · ej)σx + sin(q · ej)σy) ,

and the diagonalization of this matrix yields the dispersion relation of graphene at low energies

εq = ±

√√√√√
∑

j

cos(q · ej)

2

+

∑
j

sin(q · ej)

2

(2.6)

the positive and negative sign correspond to the electron and hole bands, which are represented in figure
2.3. Electron and hole bands touch at points K and K′ called Dirac points. There is then no gap between
the two bands. Also, since there are as many electrons π electrons as the carbon atoms, the valence band
is full while the conduction band is empty, so that the Fermi level is just at the contact point between
the two bands. When considering low energy excitations (E < t ≈ 2.7eV ) the Hamiltonian 2.5 can be
developed around points K and K ′, giving a linear dispersion relation.

If we develop wave vectors q around K±,

q = K± + κ with |κ| << 1/a,
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Figure 2.3 – Dispersion relation of graphene considering only the nearest neighbor hopping. Electron and
hole band touch at Dirac points K and K’. The zoom shows the low energy dispersion relation. (Taken
from [76]).

the exponential in the Hamiltonian Hq (2.5) can be written

h(q) = −t
∑
j

eiq·ej ' −t
∑
j

eiK
±·ej (1 + κ · ej)

= −it
∑
j

eiK
±·ejκ · ej

since
∑

j exp(iK
± · ej) = 0. This comes from the fact that energy is zero at K±, H|ψ±(K±)〉 = 0 and so

h(K±) = 0 in relation 2.5. Doing the sum over the nearest neighbors whose vectors ej are 2.1, 2.2 and
2.3 we have

h(q) ' ±3

2
ta(κx − iκy). (2.7)

which determines a new effective hamiltonian,

Heff
α=±(κ) =

3

2
ta

(
0 α(κx − iκy)

α(κx + iκy) 0

)
=

3

2
taα (κxσx + κyσy) (2.8)

There are two effective Hamiltonians α = + and α = − corresponding to the points K and K ′, they can
be written in the following way :

Heff
α=± = α~vFκ · σ,

which is the Hamiltonian of a massless relativistic particle, revealing the relativistic character of electrons
in graphene.

Diagonalization of the Hamiltonian 2.8 gives the dispersion relation around K and K ′

εα(κ) = ±3

2
ta|κ| = ±~vF |κ| (2.9)
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where vF is the Fermi velocity, the group velocity of electrons near Fermi energy

vF =
3ta

2~
≈ 1× 106m/s. (2.10)

The dispersion relation is linear, as is represented in the zoom in figure 2.3. Its validity is restricted to
low energies, where the chemical potential is smaller than t. The chemical potential µ can be written in
terms of the Fermi wave vector like

kF =
µ

~vF
and using 2.10 we can write µ/t = 3akF /2. The condition µ << t is then equivalent to

akF << 1 or λF >> a

which is precisely what justifies the development of wavevectors around K and K ′.
To estimate kF in our samples we can use the following relation (for voltages far from the Dirac

point) 1

kF = 4.9× 107
√
Vg − VD m−1

where Vg is the gate voltage applied to the sample that allows to change the Fermi energy EF , and VD is
the gate voltage corresponding to the Dirac point. The maximum gate voltage applied to our samples is
in general Vg−VD ≈ 60V which gives a minimum bound for λF of ≈ 17nm. The maximum bound to λF is
given by the minimum electronic density reachable in our samples, which is in general ≈ 0.2× 1012/cm2.
It is limited by the puddles of electrons and holes that impede to target a zero electronic density. kF is
determined from the electronic density using

kFmin =
√
πnmin.

We have then
17nm . λF . 79nm

The minimum λF being limited by the maximum gate voltage that can be applied to the sample without
damaging it (≈ 60V ), implies that we are always in the regime λF > a with a the carbon to carbon
distance ≈ 0.14nm, which makes the low energy model a valid model.

The band structure of graphene give it its particularities to this material. The main features can be
summarized as :

1. Valence and conduction band touch at zero energy points K and K ′ that are crystallographically
inequivalent. The inequivalence of these two points is not related to the presence of two types
of atoms A and B in the unit cell but to the Bravais lattice itself. Graphene is then a zero gap
semiconductor with two valleys. It can also be seen as a metal in which valence and conduction
bands form a single big band but having a zero density of states near the Fermi level.

2. Near the Fermi level, the dispersion relation of electrons is linear like the one of massless Dirac
fermions, ε = ±

√
p2c∗2 +m∗2c∗2 = ±pc∗ with a zero effective mass m∗ = 0 and a velocity c∗ =√

3ta/2~ which is related to the lattice constant a ≈ 0.25nm and the hopping energy t ≈ 3eV . The
group velocity of electrons in graphene c∗ is 300 times smaller than the velocity of light.

3. Near the Fermi level, there is a symmetry between the conduction and the valence band. It is referred
to as electron hole symmetry.

Graphene brings us to the bilayer graphene, which is also a very interesting material. In this material
semiconducting properties can be controlled by electric field effect. Bilayer graphene can have a gap that
can be modulated by applying a bias voltage between the two graphene layers (contrary to the monolayer),
but most of all, bilayer graphene gives access to a different physics with respect to the monolayer, with a

1. This relation comes from the capacitor model, which will be described in the next chapter
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a) b)

e
e1

e2

Figure 2.4 – The two possibilities for stacking two graphene layers. Black corresponds to the lower layer,
white to the upper layer. Circles are sites of type A, triangles sites of type B. In a) the upper layer is
displaced by e1 with respect to the lower layer and in b) the the upper layer is translated by e2. A unit
cell is represented in a). Bilayer graphene has 4 atoms per unit cell. (Taken from [76]).

dispersion relation that is quadratic rather than linear, a different diffusion factor, a different density of
states and a different quantization of energy levels in the presence of a magnetic field.

Bilayer graphene consists of two stacked graphene layers separated by d ≈ 2.4a = 0.34nm. The layers
are displaced with respect to each other by e1 or e2 (relations 2.1 and 2.2), as is shown in figure 2.4
Bilayer’s band structure can be deduced using a tight binding hamiltonian as was done for graphene [77],

H = −γ0

∑
<i,j>m

(
a+
m,ibm,j + h.c.

)
− γ1

∑
j

(
a+

1,ja2,j + h.c.
)

− γ3

∑
j

(
a+

1,jb2,j + a+
2,jb1,j + h.c.

)
− γ4

∑
j

(
b+1,jb2,j + h.c.

)

where am,i annihilates an electron on sublattice A in plane m = 1, 2 at site Ri and bm,j annihilates
an electron on sublattice B at site Rj with j nearest neighbor of i. γ0 is the in-plane hopping energy
t ≈ 2.8eV , γ1 = t⊥ ≈ 0.35eV is the hopping energy between atom A1 and A2 (see figure 2.5), γ3 ≈ 0.3eV
is the hopping energy between atom A1 and atom B2 (or atom A2 and atom B1) and γ4 ≈ 0.2eV is
the hopping energy between B1 and B2. In Fourier space at low energies, wavevector q can be expanded
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Figure 2.5 – Lattice structure of the bilayer. Dark circles represent atoms A and lighter circles atoms B.
Taken from [77].

around ±K like in the monolayer, giving the following effective Hamiltonian

Heff =


−V ~vFk 0 3γ3ak

∗

~vFk∗ −V γ1 0
0 γ1 V ~vFk

3γ3ak 0 ~vFk∗ V

 (2.11)

where k = kx + iky is a complex number and V is half the potential between the two layers. If no
potential is applied between the two layers V = 0 and γ3, vFk << γ1 high energy states can be eliminated
perturbatively and the effective Hamiltonian is reduced to :

Heff =

(
0

~2v2F k
2

γ1
+ 3γ3ak

∗

~2v2F k
∗2

γ1
+ 3γ3ak 0

)
(2.12)

If γ3 = 0 the effective Hamiltonian 2.12 has the eignevalues

εk,± ≈ ±
~2v2

Fk
2

t⊥
= ±~2k2

2m∗
,

with m∗ ≈ 0.035me. This dispersion relation correspond to two parabolic bands touching at ε = 0 as
is shown in figure 2.6. Two additional bands start at ±t⊥. When γ3 6= 0 the spectrum changes at low
energies. Instead of two bands touching at k = 0, there are four Dirac like linear bands lying at k = 0 and
at three equivalent points with a finite momentum. If a gate voltage is applied between the two layers a
gap appears that depends on the applied voltage.

The main differences and similarities between the band structure of the bilayer and the monolayer
graphene can be summarized as :

1. In bilayer graphene, the valence and conduction band touch each other at zero energy like in the
single layer.

2. In the approximation γ3 = 0 (no hopping between atoms A1 and B2 in figure 2.5), dispersion relation
of the bilayer is quadratic and not linear like in the case of the monolayer.
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Figure 2.6 – Band structure of the bilayer graphene when V = 0. There are two bands that start at
ε = 0 and two additional bands that start at ±t⊥

3. Valence and conduction bands being symmetric like in graphene for the bilayer, they touch at a
single k = 0 point contrary to graphene (in the γ3 = 0 approximation.)

4. Bilayer graphene opens the possibility of a tunable gap semiconductor.

Lets now discuss the density of states and the diffusion coefficient of these two systems. The density
of states ρ(EF ) counts the number of states per unit area A in the vicinity of Fermi energy. It can be
obtained from the number of states N below EF ,

ρ(EF ) =
1

A

∂N

∂E

with

Nc = g
∑
k

k≤kF

≈ gA
∫
k≤kF

d2k

(2π)2
=
gA

4π2
2π

∫ kF

0
dkk =

gA

4π
k2
F

which is valid for any bidimensional system (g is the degeneracy due to internal degrees of freedom). In
the case of graphene and the bilayer we have respectively

EML = ~vFkF EBL =
~2k2

F

2m∗

then k2
F = E2

ML/~2v2
F for the monolayer and k2

F = EBL2m∗/~2 for the bilayer, which gives

ρ(EF )ML =
2EF
π~2v2

F

and ρ(EF )BL =
2m∗

π~2
(2.13)

where I have taken g = 4 for the monolayer and the bilayer (degeneracy of spin and valley). The density
of states is linear in energy for the monolayer and is a constant for the bilayer, like in most 2D systems.

The diffusion coefficient tells how electrons diffuse in a system. It can be written in terms of the mean
free path, D = vF le/d with d the dimension of the system, or in terms of the density of states,

D =
σ

e2ρ(EF )
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Experimentally conductivity σ is found proportional to k2
F for both the monolayer and the bilayer 2. Then

σML ∝
√
EF , σBL ∝ EF

and

DML ∝
1√
EF

, DBL ∝ EF .

The diffusion coefficient has then a different dependence on Fermi energy for the monolayer and the bilayer
due to the different density of states of these two systems.

An other remarkable difference between the monolayer and the bilayer lies on the Fermi velocity.
Usually, the Fermi velocity changes with energy, as is the case in the bilayer

vBL =
~k
m∗

=

√
2E

m∗
.

In the monolayer on the other hand, electrons have always the same velocity no matter their energy or
momentum,

vML ≈ 1× 106m/s.

Finally, lets discuss the properties of graphene and bilayer graphene in the presence of a magnetic
field. I will follow the approach used during the lectures on graphene given at Orsay by Jean Nöel Fuchs
and Marc Goerbig [57].

We can deduce the expressions of the cyclotron mass and the cyclotron radius using Hamilton equa-
tions. The Hamiltonian of a system in the presence of a magnetic field, depends on Π the quantity of
motion, that in a crystal is ~k with k the Bloch wavevector. Π is Gauge invariant but is not the conjugated
momenta. Conjugated momenta p is given by

p = Π + qA

which is on the other hand, non Gauge invariant.
Hamiltonian has the form

H(p, r) = E(Π) = E(p + eA) (2.14)

where E(Π) is respectively for the bilayer and the monolayer,

EBL =
Π2

2m∗
, EML = vF |Π|. (2.15)

E(Π) = E(|Π|) given the symmetry of the band structure of graphene. Hamilton equations are, given
that H has the form 2.14

ṙ = v =
∂H

∂p
=
∂E

∂Π

ṗ = −∂H
∂r

= − ∂E
∂Π
× ∂(eA)

∂r
= −ev ×B (2.16)

where v is electrons’ group velocity. We also have

Π̇ = ṗ

then

Π̇ = −ev ×B (2.17)

and (2.18)

ṙ = v =
∂E

∂Π

2. More precisely conductivity has the form k2 ≈ ln2(k) as will be seen in chapter 4
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the solution for uniform circular motion is

Πc = eBrc, (2.19)

which defines a cyclotron radius and a cyclotron frequency of the form

rc =
Π

eB
, ωc =

v

rc
=
eB

Π

∂E

∂Π
.

Cyclotron mass can be also deduced from Π using the relation

mc ≡
eB

ωc
=

Π

v

We have then that in the case of the bilayer

EBL =
Π2

2m∗
v =

Π

m∗
ωc =

eB

m∗
rc =

√
2m∗

eB

√
E and mc = m∗.

And for the monolayer,

EML = vF |Π| v = vF ωc =
eB

E/v2
F

rc =
1

eBvF
E and mc =

E

v2
F

.

We see again that Fermi velocity is independent of energy in the case of the monolayer. We also see that
cyclotron frequency depends on energy in the case of the monolayer and it is a constant in the case of the
bilayer. Cyclotron radius has a different dependence in both systems, linear in energy for the monolayer
and a square root dependence for the bilayer. Finally, we see that cyclotron mass depends on energy for
the monolayer and it is a constant in the case of the bilayer.

In the presence of a magnetic field, the quantization of energy levels goes as
√
n for the monolayer

contrary to the bilayer that shows a linear dependence on n.

EML = vF
√

2~eBn
EBL = ~ωcn

with ωc = eB/m∗.
Having reviewed the principal aspects of electronic transport in graphene and its differences and

similarities with the bilayer graphene, we can proceed to the description of the experiments done in
graphene at the group of Mesoscopic physics at Orsay during my PhD. I start in chapter 4 describing
the experiments that led to the determination of the characteristic transport scattering times in graphene
and bilayer graphene, elucidating the nature of impurities in our samples [86]. Chapter 5 is reserved to
universal conductance fluctuations in graphene (and bilayer graphene) [87] and finally chapter 6 shows
experiments in which a superconducting proximity effect was induced in graphene [88].
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Figure 2.7 – Main quantities in graphene as a function of Vg, kF and EF . (εr = 3.8, ε0 = 8.85 ∗ 10−12)



Chapitre 3

Sample fabrication

Our samples were fabricated using the exfoliation method. This technique was used successfully for
the first time on graphite by Novoselov et al.[81] in 2004 who obtained the first single-layer graphene
presenting an electric field effect. The method consist in a micromechanical cleavage of natural graphene
flakes on a oxidized Si wafer with a SiO2 layer that permits the optical visibility of graphene. Indeed,
interference between the reflection paths that come from the air-to-SiO2 and the SiO2-to-Si interfaces
are affected by thickness variations of a fraction of wavelength, leading to colorshifts that can be easily
appreciated by eye.

We used natural graphite purchased from the company NGS Naturegraphit (www.graphite.de) and
highly doped Si wafers with a 285nm SiO2 layer. In a first stage alignment marks in Ta were deposited
using e-beam lithography and lift-off techniques. The presence of alignement marks in the wafer is impe-
rative to be able to track graphene layers once they are identified. Prior to the deposition of graphene, the
wafers are cleaned using oxygen plasma or Ozone. This increases the chances of having a graphene sticked
to the surface. The oxygen plasma at ≈ 1mbar removes organic layers like greases, oils or waxes. They are
attacked chemically by oxygen, that forms molecules of CO or CO2. The plasma heats the sample slightly,
which together with the vacuum can make some impurities evaporate. Also, high energy particles in the
plasma may cause the breaking of impurities into smaller molecules that can be extracted easily. The UV
radiation generated from the plasma can destroy impurities as well. Ozone (O3) also reacts with organics.
It is created by ultraviolet radiation that converts O2 into ozone. Ozone removes organics, photoresist,
metals and particles.

We used both the O2 plasma and the ozone method without noticing a better performance of one or
the other. The O2 plasma methode takes ≈ 15 min while the ozone method ≈ 1 hour.

The steps followed in the exfoliation technique are resumed in figure 3.1. After the exfoliation, we
proceed to scan the sample using an optical microscope with a zoom ×500. The thickness of SiO2 (285nm)
gives a contrast for graphene in the blue tones. The number of layers is confirmed afterwards using a
Raman spectrum. Figure 3.2 shows the optical image of two samples, where a monolayer and a bilayer
were identified. The difference in the color of the substrate is due to a numerical filter. In both images
the monolayer seems more transparent than the bilayer.

Raman scattering depends on the electronic and vibrational properties of a material, its spectrum in
graphite has 3 prominent peaks : G, D, and D’. The G peak (≈ 1580cm−1, 210meV ) arises from in-plane
vibration of atoms (Eg2 phonon mode) in which the atoms of the two sublattices in graphene (atoms A
and B) vibrate in opposite directions. The D peak is associated to defects and it appears in graphene at
≈ 1350cm−1 (≈ 180meV ). If there are a lot of defects in the material, D will have a pronounced intensity.
The D’ peak (≈ 2700cm−1, ≈ 365meV ) also known as the 2D peak is sensitive to energy dispersion, it is
then the indicator for single layer, bilayer graphene and multilayer graphene. In graphene the 2D peak is
a single and sharp peak, while in graphite it is the superposition of multiple peaks, it is then broader and
shifted with respect to the one of the monolayer. Figure 3.3 [82] shows the Raman spectra of a single layer
and a bilayer graphene where the peaks G, D’ and G’ can be distinguished, the absence of the D peak

33
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Figure 3.1 – Steps to fabricate a graphene sample using the mechanical exfoliation technique
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20µm

20 µm

25µm 25µm

Figure 3.2 – Optical image of two samples after the e-beam lithography and after the metal deposi-
tion. Top : Ti/Au (5nm/50nm) by Joule evaporation. Bottom : Ti/Ta (3nm/100nm) with Tantalum by
sputtering.
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Figure 3.3 – Raman spectra for a monolayer (a) and a bilayer (b) showing the positions of peaks D,
G,and D’. Taken from [82]

shows the structural quality of the samples. The difference in the 2D peak which discerns the monolayer
from the bilayer can be observed. Raman spectroscopy can distinguish a single from a bilayer from few
layers (less than 5). More than five layers are almost indistinguishable with respect to bulk graphite.
Figure 3.4 shows the 2D peak of the Raman spectrum of two of our samples. The Raman measurements
were made at the Université de Paris 7 (Paris Diderot) with the collaboration of Maximilien Cazayous
and Yann Gallais, they have also been done at SPEC, CEA Saclay.

The difference between the Raman shift of the monolayer and the bilayer is ≈ 12cm−1. Once the
graphene to be contacted is tracked, we proceed to the e-beam lithography stage in order to deposit
afterwards the metallic contacts. We use the polymeric e-beam resist PMMA. Different tests were done
to find the appropriate thickness of resist and electron dose in order to have a good lift on graphene
samples. The best results were obtained using a single 400nm layer of PMMA A6 (which needs a spinning
of 4000rpm) with a baking of 120̊ C during 20 min. The doses that worked the best using a working
distance of ≈ 8.3mm were 260 and 280 µC/cm2 for the small details and 300µC/cm2 for the larger parts.

Before the deposition we anneal the sample with the PMMA mask in vacuum (P ≈ 10−6mtorr) in
order to evaporate impurities from the the exposed regions and minimize the contact resistance. We have
done annealings at 150̊ C during 45min., but mostly at 60̊ C up to 3h45min. Figure 3.2 shows optical
images of two samples after the e-beam lithography and after the metal deposition. The methods used
for metal deposition are Joule evaporation and sputtering. In the evaporation method, a high current
(depending on the metal to be evaporated, ≈ 200A) crosses a resistive heater to melt the metal and
evaporate it. The vapor arrives in a single direction to the sample depositing an uniform layer with a
thickness that is controlled with a quartz crystal oscillator. As metal is deposited, the mass of the crystal
goes up and the frequency of oscillation goes down, allowing an association of the change in frequency
with the deposited metal thickness. The process is done in high vacuum (≈ 10−6mbar) in order to avoid
scattering of the vapor with gas-phase atoms in the chamber. Using this technique we have deposited
Titanium, Gold and Aluminium.
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Figure 3.4 – Optical image of two of our samples with their respective Raman spectrum. We can dis-
tinguish a monolayer which has a narrower 2D peak with respect to the bilayer. They are also shifted of
about 12cm−1.
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In the sputtering method, the sample is in a chamber with Argon gas. A voltage difference is imposed
between the target metal and the sample which forms a plasma. The argon ions knock the target metal
pulling out the metal atoms that are ejected in all directions hitting the sample. In this way a uniform
layer is deposited. Materials we have deposited by sputtering are Tantalum, Platinum, Palladium and
Niobium. This method contrary to the Joule deposition of atoms is isotropic, which causes the creation
of “walls” in the contacts that can cause short circuits. Figure 3.2 shows the lithography and the metal
deposition stages for two samples in which we deposited Ti/Au and Ti/Ta. Titanium is evaporated while
Tantalum is sputtered. It can be noticed that the Joule deposition technique gives cleaner contacts than
the sputtering. Sputtering on the other hand makes a better metal adhesion and improves the contact
resistance.

We have tried different materials. Table 3.5 shows a recompilation of the different metals used. We
calculated the square resistance for each sample from two probe resistance measurements averaged over
different junctions. We have found that the best electrical contact to graphene is achieved with Pd,
Ti/Au and Ti/Ag. We have observed that temperature annealing in vacuum between 60̊ C and 150̊ C
before the metal deposition (Ti/Ta, Ti/Au) lowered the two probe resistance.

We have seen that an annealing after metal deposition improves also electrical contact for some
materials. The temperature annealing performed in our samples is summarized in table 3.6. Annealing
improved two probe resistance in Pd and Ti/Nb samples. In Pd resistance was divided by 2 and in
Ti/Nb (a single junction) resistance decreased by a factor of ∼ 50. Annealing was done between 300̊ C
and 750̊ C. The effect of annealing on suspended samples is not clear. After annealing some junctions
changed from being open to being relatively low resistive. Annealing might have caused the electrodes to
fall on the substrate.

Concerning the superconducting materials, the material that let us induce a superconducting proximity
effect in graphene was Pt/Ta. The disadvantage with this material is that it gets resistive rapidly. Using
Ti/Ta and NbN we observed annomalies in the dI/dV characteristics at high bias. This put in doubt
the good quality of the superconductor deposited. Using Ti/Al and Pd/Nb we were not lucky and we
always had a sample with no gate voltage effect or with a leak to the gate. Using Ti/Nb the junctions
became very resistive in a short time.

We have tried graphene suspension by etching the SiO2 chemically 1. We suspended graphene samples
with electrodes on Ti/Ta and Ti/Au. The first step is putting a PMMA mask on graphene with windows
that permit the entrance of the etching substance (HF) underneath graphene. The sample is immersed
then in HF during approximately 70s. The etching rate is approximately 2nm/s. It is then immersed in
water during some seconds to stop etching and at the end in acetone. This permits to dry the sample in
a critical point dryer to avoid surface tension. SEM images of suspended samples with Ti/Au and Ti/Ta
electrodes are shown in figure 3.7.

dI/dV characteristics of the three-layer suspended graphene sample (corresponding to the sample
shown in figure 3.7 left), show quasiperiodical features that were attributed to the optical out of plane
phonon mode in graphite (phonon mode ZO’ with E = 15meV ) 2. This mode corresponds to two neigh-
boring nonequivalent planes vibrating in phase opposition along the c axis. Measurements done on this
sample will not be discussed in this document but can be found in figure 4 of [89]. The experiments done
on the second sample (figure 3.7 right) were not conclusive.

With the motivation of being able to observe the superconducting proximity effect in the quantum Hall
regime, we have fabricated graphene samples with electrodes made of superconducting tungsten, which
has a critical magnetic field larger than 5T at 1K. Tungsten electrodes are grown using a Ga focused ion
beam (FIB) that decomposes tungsten hexacarbonil, a metallo-organic vapor. Figure 3.8 shows a sample
done in collaboration with Miguel Monteverde. It is a few layer graphene in which Pd electrodes were
deposited previous to the tungsten electrodes. A cut was done using the FIB separating two areas of the
sample, a monolayer and a bilayer. Afterwards, a nice alignment was done and the tungsten was deposited.

1. Suspention of samples was done at SPEC, CEA Saclay with the collaboration of Miguel Monteverde.
2. This ZO’ phonon mode is splitted in a supplementary mode with E = 7.5meV in three layer graphene



39

Material

Name of the 

sample

No 

layers

Annealing 

before 

deposition Thickness

Square 

resistance(

kOhms)

Pt/Ta Graph35-11 ML 3nm/62nm 23.6

Graph8 BL 3nm/62nm 345.0

Graph5 BL 2nm/62nm/4nm 5.1

Graph9_G3511 ML 2nm/62nm/3nm 6.2

Pt/Ta 49.5

Ti/Ta Graph24 ML 5nm/70nm 42.5

Graph13-24 ML 60°C 45' 2nm/100nm 10.2

Graph5-17_5-19 ML, BL 60°C 45' 3nm/100nm 9.8

Ti/Ta 12.4

Ti/Al Graph8-F3 MML 3nm/100nm 23.6

Graph4_G3511 ML 4nm/70nm 28.1

Ti/Al 25.8

Ti/Au Graph 36 ML 5nm/40nm 8.4

Graph38-20 BL 60°C 3h30' 5nm/50nm 3.0

Graph 19-12  25-14ML,BL 60°C 1h 5nm/45nm 7.0

Ti/Au 5.3

Pd M13-M22 ML 150°C 45' 40nm 3.2

F3 BL 150°C 45' 40nm 4.4

F15 BL 150°C 45' 40nm 0.48

Pd 3.1

Pd Ag Graph55-57 BL,ML 60°C 3h45' 70nm 5.4

Pd Ag 5.4

Nb N Graph 62-60 ML 100°C 30' 40nm 29.2

Graph 57-29 MML 146.1

Nb N 122.7

Pd/Nb Graph 5-65 ML,BL 70°C 3.5nm/80nm 12.0

Graph 64-4 MML 3.5nm/80nm 0.86

Pd/Nb 8.28

Ti/Nb Graph17-6 BL 60°C 45' 3.4nm/60nm 108.76

Ti/Nb 108.76

Figure 3.5 – Recompilation of the different materials deposited to graphene. Materials were tried mostly
on monolayers and bilayers. ML means monolayer, BL bilayer and MML multiple layer. Most of the gra-
phene samples were tested with a Raman spectrum, except those where the number of layers is highlighted.
The lowest square resistance was measured for Ti/Au, Pd and Pd Ag (highlighted materials)
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Material Sample
No 
Layers Thickness

Ti/Al Graph4_G3511 ML 4nm/70nm Junction 1_2 2_3 3_4
Before annealing (kOhms) 3.7 3.9 10
Annealing 300°C 4.8 5.1 8

Ti/Au Graph 36 ML 5nm/40nm Junction 1_3
Before annealing (kOhms) 3.4
Annealing 300°C 1h 3.4

Graph36 ML 5nm/40nm Junction 1_2 1_4 5_6
suspended Before annealing (kOhms) 2400 2400 1000

Annealing 560°C 1h15' 1000 1000 430
Annealing 600°C 1h30' 130 136 106
Annealing 700°C 1h30' 19 9 7
Annealing 700°C 1h open 6 7

Pd M13 ML 40nm Junction 1_2 1_3 1_4 1_5
Before annealing (kOhms) 4.1 2.2 10 12
Annealing 300°C 1h30' 14.6 11.5 23.3 26
10' after annealing 4 2 9.5 4
30' after annealing 2 1.3 5.3 6.2

F15 BL 40nm Junction 2_3
Before annealing (kOhms) 3.6
Annealing after FIB 700°C 1h 1.3

Ti/Ta Graph13-24 ML 2nm/100nm Junction 1_2 2_3 3_4 4_6 6_8
Before annealing (kOhms) 48 1.06 1.48 0.96 0.99
Annealing 700°C 1h 37 1.5 1.7 0.99 1

Graph5-17_5-19 ML 3nm/100nm Junction 7_8 8_9 2_3 1_2 5_6 4_5
suspended BL Before annealing (kOhms) open open open open open open

Annealing 300°C 1h15 28 open open open open open
Annealing 400°C 2h15' open open open open open open
Annealing 550°C 1h 1.4 open 200 85 200 300
After SEM FEG observation open open ? 270 250 380
After annealing 550°C 2h 7 5 360 350 200 100
Two days later 12 7.6
After experiment 13.4 7.9

Ti/Nb Graph17-06 BL 3.4nm/60nm Junction 1_2 6_7
Before annealing (kOhms) 240 33
Annealing 300°C 50' 260 49
Annealing 600°C 55' 4.6 open
4 days later 4.7
During a gate voltage sweep 50
Annealing 750°C 2h 7.5
1 month later open

Figure 3.6 – Recompilation of temperature annealing done in samples after metal deposition.
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Figure 3.7 – Suspended graphene samples with Ti/Au electrodes (left, three layers of graphene) and
Ti/Ta electrodes (right). SEM images were made after measurements. In the Ti/Au sample electrodes
collpased. We think that the Ti/Ta sample was a truly suspended sample since ripples are distinguishable.

Unfortunately all the junctions were measured in opened circuit. The FIB has been on the other hand,
successfully used to do cuts and remove short circuits, as is shown in figure 3.9. In this sample, resistance
between electrodes 1 and 2 that were connected to graphene, was measured of 710Ω. This was attributed
to graphite crystals shortcutting the electrodes. After a cut made with the FIB, measured resistance was
of 4.1kΩ which is reasonable for a graphene junction.

Since FIB seemed to be too aggressive when deposited on graphene, other trials were done in which
tungsten was deposited on palladium electrodes previously deposited on graphene. The palladium elec-
trodes should become superconducting through superconducting proximity effect. Figure 3.10 and 3.11
show two samples in which this was done, samples F3 and F15. In sample F3 (figure 3.10), junction
1-6 had a resistance of 350Ω, and after the tungsten deposition it became opened. Junction 2-3 had a
resistance of 4.4kΩ but with no gate effect. A temperature bake in vacuum at 700̊ C was done which
reduced the resistance of the junction 2-3 to 1.3kΩ but with still no gate effect. To verify the resistance
of the deposited tungsten, a tungsten electrode was deposited between two Pd electrodes. The measured
resistance was of 1.3kΩ which is reasonable. In sample F15, depositing tungsten also made the junctions
more resistive. Before the FIB, junction 1-8 was 1kΩ. After the FIB, it became of 200kΩ. An other try
like this was made on sample F42, which was a bilayer with palladium electrodes. After the tungsten
deposition on one electrode, the junctions formed by that electrode passed from being around 700Ω to be
in opened circuit.

We expect that by changing the deposition conditions, we will be able in the future to deposit this
high critical magnetic field tungsten on a monolayer or bilayer graphene.
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BILAYER

Cut

MONOLAYER

Cut

Figure 3.8 – Sample F6. A monolayer and bilayer separated by a cut done with the FIB. Tungsten
electrodes were deposited using the FIB. Pd electrodes were previously deposited

Several cuts

1 2

Figure 3.9 – Sample M13. Monolayer with palladium electrodes. Several cuts between electrodes 1 and
2 were successfully done with the FIB to eliminate the short circuit.
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deposited 1

6

deposited 

with the FIB
1

2

3

Figure 3.10 – Sample F3. Bilayer with palladium electrodes. Tungsten was deposited over palladium.
Junction 6-1 is opened after the tungsten depostion.

Tungsten electrodes

1

8

Figure 3.11 – Sample F15. Junction 1-8 passed from 1kΩ to 200kΩ after the tungsten deposition.
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Chapitre 4

Measurement of characteristic scattering
times in graphene and bilayer graphene
that reveal the nature of scatters in
these systems

4.1 Introduction

The nature of defects that limit the carrier mobility constitute an important issue in graphene. Theo-
retical works have approached to this question trying to explain the carrier density dependence of conduc-
tance, which is strongly related to the nature of impurities in a system. The results at the moment don’t
show a complete accordance with experimental results, making the subject of the main scattering me-
chanism in graphene still controversial. In this chapter I expose our approach to the problem which lays
on magnetoresistance measurements on the monolayer and bilayer graphene that let us extract the cha-
racteristic transport times (the elastic time τe and the transport time τtr). The ratio of these times give
information about whether impurities’ potential is short or long range.

It is important to distinguish the transport time τtr that governs current relaxation and enters in
Drude conductivity from the elastic scattering time τe which is the lifetime of a planewave state. The
former is the time that an electron takes to be backscattered, i.e. to reverse its momentum while the latter
is the time between two elastic collisions. A schema illustrating both times is shown in figure 4.1 These

e



e

trtr

Figure 4.1 – Transport time appearing in Drude formula (left). Elastic scattering time which determines
the lifetime of a planewave state (right).
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times can be defined as follows,

τ−1
tr ∝

∫ 2π

0
P (θ)(1− cos θ)dθ τ−1

e =

∫ 2π

0
P (θ)dθ

where θ is the scattering angle and P (θ) depends on the scattering mechanisms. The factor (1− cos θ)
in τtr gives more weight to collisions where the direction of momentum is inverted. A large ratio τtr/τe
means that scattering is predominantly in the forward direction. This is the case of the 2D electron gases
(2DEG) confined to GaAs/GaAlAs heterostructures, where the dominant scattering mechanism comes
from the long range potential associated with donors which are set back from the 2DEG and which
produce small angle scattering. In the 2DEG τtr/τe ≥ 10.

A large ratio τtr/τe means that the range of the potential due to scatterers R is bigger than the Fermi
wavelength (λF < R). In this case, like in the 2DEG, scatterers are long range. A ratio τtr/τe ≈ 1 on the
other hand, gives signature of scatterers for which λF > R.

4.2 Scattering process in graphene

In this section I will discuss what is expected for graphene’s conductivity in the presence of short or
long range impurities using Edward’s model [57]. I will then make a summary of some of the theoretical
and experimental works that have addressed this question and that have not for the moment, arrived to
an unanimous conclusion.

Edward’s model [2] describes a non interacting electron gas with a potential V (r) that comes from
Ni identical impurities localized at rj and distributed uniformly ni = Ni/A = const. Impurities are
distributed randomly and are characterized by the potential v(r) which is considered as an isotropic
central potential.

V (r) =

Ni∑
j=1

v(r− rj)

The electron collision time in the presence of such a potential can be estimated [57] using Fermi golden
rule to the lowest order of perturbation. We use a representation of plane waves that correspond to the
eigenstates of the system’s free hamiltonian |k >. The electron collision time τk is interpreted as the
lifetime of states |k >.

1

τk
=

2π

~
∑
k′

∣∣〈k′|V |k〉∣∣2 δ(εk′ − εk) (4.1)

where 〈
k′ |V |k

〉
=

1

A

∫
d2rV (r)ei(k−k’)·r = Ṽ (k− k’)

=
1

A

N∑
j=1

ṽ(k− k′)ei(k−k
′)·rj

and ṽ(k) is the Fourier transform of v(r− rj), the potential associated to each impurity j 1. We have,∣∣〈k′ |V |k〉∣∣2 =
∑
j,j′

ei(k−k
′)·(rj−r′j)

∣∣ṽ(k− k′)
∣∣2

=
∑
j=j′

. . .+
∑
j 6=j′

. . . (4.2)

=
Ni

A

∣∣ṽ(k− k′)
∣∣2 +

∑
j 6=j′

ei(k−k
′)(rj−r′j)

∣∣ṽ(k− k′)
∣∣2 .

1. ṽ(k− k′) has the dimensions of potential × area, where the area is associated to the range of potential.



4.2. SCATTERING PROCESS IN GRAPHENE 47

The second term disappears after averaging over the random position of impurities, and replacing in 4.1,

1

τk
=

2π

~
Ni

A

∑
k′

∣∣ṽ(k− k′)
∣∣2 δ(εk − εk′) (4.3)

4.2.1 Local short range impurities

If we consider a local short range impurity therefore ṽ = const for |k−k′| ≤ 2kF , we have (if ṽ << EF ),

1

τk
=

2π

~
Ni

A
ṽ2
∑
k′

δ(εk − εk′)

=
2π

~
niṽ

2ρ(εk) (4.4)

where we have replaced the density of states ρ(εk)

ρ(εk) =
1

A

∑
k′

δ(εk − εk′) (4.5)

At Fermi energy, scattering time is
1

τ
=

2π

~
niṽ

2ρ(εF ) (4.6)

We can calculate, using 4.6 the ratio between the transport time τtr and the elastic time τe. As said at
the beginning of this chapter, the elastic time is the time between two elastic collisions while the transport
time is the time in which the memory of the incident direction is lost. They are written for short range
scattering as follows :

1

τe
=

2π

~
niṽ

2ρ(εF )

∫ π

−π
dθ

(
1 + cos jθ

2

)
1

τtr
=

2π

~
niṽ

2ρ(εF )

∫ π

−π
dθ(1− cos θ)

(
1 + cos jθ

2

)
(4.7)

where θ is the angle between the incident and the scattered trajectory, as illustrated in figure 4.1. The
transport time has an angular factor (1−cos θ) that counts only trajectories with changing direction after
collision. For graphene there is an additional factor. It is (1 + cos jθ)/2 with j = 1 for the monolayer and
j = 2 for the bilayer. This factor counts for the absence of backscattering in the monolayer. We find :

τtr
τe

=

∫ π
−π dθ

(
1+cos jθ

2

)
∫ π
−π dθ(1− cos θ)

(
1+cos jθ

2

)
That for the monolayer is

τtr
τe ML

=

∫ π
−π dθ

(
1+cos θ

2

)∫ π
−π dθ

(
sin2 θ

2

) = 2, (4.8)

and for the bilayer

τtr
τe BL

=

∫ π
−π dθ

(
1+cos 2θ

2

)∫ π
−π dθ

(
(1+cos 2θ)(1−cos θ)

2

) = 1. (4.9)

Using Drude’s relation for conductivity we have

σ = e2 v
2
F

2
τρ(EF ) =

e2

2h

(~vF )2

niṽ2
(4.10)

which is a constant independent of the gate voltage Vg and it is not what is observed experimentally.
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4.2.2 Charged impurities

If we consider that the potential due to an impurity is

v(r) =
Ze2

εr

(with ε the dielectric constant of the medium). In the Thomas-Fermi approximation we have

ṽTF (q) =
2πe2

ε(q + qTF )
(4.11)

where q = |k− k′| and 1/qTF is the characteristic screening length

qTF ≡
2πe2

ε
ρ(εF ),

that in graphene is

qTF = 4
e2

ε~vF
kF .

and in the bilayer

qTF =
4me2

~2ε

Replacing 4.11 in 4.3 we have,

1

τk
=

2π

~
Ni

A

∑
k′

(2πe2)2δ(εk − εk′)
ε2(|k− k′|+ qTF )2

Summing over k′ is summing over all the possible states of the scattered electron. This implies integrating
over the cone shown in figure 4.2,

1

τk
=

2π

~
Ni

A

A

(2π)2

∫
(2πe2)2δ(εk − εk′)
ε2(|k− k′|+ qTF )2

d2k′ (4.12)

in graphene we have E = ~vk therefore δ(~vF (k − k′)) = 1
~vF δ(k − k

′)

1

τk
=

2π

~
Ni

A

A

(2π)2

(2πe2)2

ε2
1

~vF

∫
δ(k − k′)

(|k− k′|+ qTF )2
d2k′

=
2πNie

4

~2ε2vF

∫
δ(k − k′)

(|k− k′|+ qTF )2
k′dk′dθ

=
2πNie

4

~2ε2vF

∫
kF

(2kF sin(θ/2) + qTF )2
dθ

=
1

ε2k2
F

πNie
4

2~2vF

∫
1

(sin(θ/2) + qTF /2kF )2dθ (4.13)

since k = k′ = kF .
Coming back to Drude’s expression for conductivity,

σ = e2 v
2
F

2
τρ(EF )

we deduce that conductivity (and therefore mobility) in the presence of charged, long range impurities,
depends on ε2, the medium’s dielectric constant, on the range of the potential which is present in qTF , the
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Figure 4.2 – Scheme representing the integral 4.12 on the Fermi surface. k and k′ are the wave vectors
of the electron before and after being scattered. They are both on the Fermi surface (k = k′ = kF ). θ is
the angle between k and k′, and q = k− k′

inverse of the screening range and on k2
F the electronic density, which is in accordance with experimental

results.
Calculating τtr/τe is more complicated in this case, since the potential depends on θ,

τtr
τe

=

∫
dθ (2πe2)2kF

(2kF sin(θ/2)+qTF )2

(
1+cos jθ

2

)
∫ (2πe2)2kF dθ

(2kF sin(θ/2)+qTF )2
(1− cos θ)

(
1+cos jθ

2

) .
In the case of short range impurities the potential is isotropic, it is expected then that τtr ∼ τe as was
found in the previews section. In this case of charged screened impurities, the potential depends on θ,
which makes τtr 6= τe. We expect in particular τtr/τe ∼ (kF /qTF ) where qTF << kF .

Long range impurities have been considered theoretically in several works ([60], [62]-[64]) without
having a satisfactory accordance with experiments. Even when charged impurities seem to describe better
experimental results with respect to short range impurities, recent experiments in which the change of σ
is measured upon immersion of graphene samples in different dielectric media, show different results [65]
,[66]. In the following, a short recompilation of some works in this direction is made.

Namura and MacDonald [60] have studied numerically both short range and Coulomb distributed
scatterers. They have evaluated numerically a finite size Kubo formula, considering the eigenstates a the
Dirac equation. They have considered a constant potential in k-space in the case of short range impurities
and a potential like the one in 4.11 for screened long range impurities. The results using both kind of
potentials are shown in figure 4.3. For short range scatters, the electronic density dependence of the
conductivity is non linear and approaches to a constant for |EF | >> ~/τ . Its minimum value σ(E = 0) is
close to the value predicted by self-consistent Born approximation calculations (1/π)e2/h [61]. In the case
of screened Coulomb scatters, they have found that the conductivity σ increases linearly with electronic
density |n|. The minimum value of conductivity ≈ e2/h is a few times larger than the one in the short
range model.

Das Sarma et al. [62]-[64] claim that most of the observed transport properties in graphene such as
the minimum value of the conductivity or its linear dependence with electronic density at high densities
can be explained quantitatively by scattering from charged impurities. The difference with Namura et al.
calculations is that Das Sarma et al. treat electron interactions in a RPA scheme 2. Developing an analytic

2. Using RPA and Thomas Fermi approximation in the limit of strong interactions rs >> 1 is questionable, since in this
regime the screening length is smaller than the Fermi wavelength (Rscreening < λF )
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Short range scatterers Screened Coulomb scatterers

Figure 4.3 – Electronic density dependence of Dirac-fermion conductivities for short range scatters (left)
and screened Coulomb scatters (right) as calculated numerically by Nomura and Mac Donald [60]. In the
case of short range scatterers conductivity approaches to a constant for |EF >> ~/τ |. The inset shows
the density of states in both cases.

solution for the Boltzmann transport theory using a RPA treatment of the charged impurity scattering
they have found [64],

σ =
e2

h

n

nimp

2

G(2rs)
(4.14)

with
rs = e2/(~vF ε)

and
G(x)

x2
=
π

4
+ 3x− 3πx2

2
+
x(3x2 − 2) arccos(1/x)√

x2 − 1
.

rs is the fine structure constant in graphene, which is the ratio between the graphene Coulomb potential
energy and the kinetic energy. This constant quantifies the intensity of electron-electron interactions. For
graphene on a SiO2 substrate, rs = e2/(~vF ε) ≈ 0.8, which means a strong e-e interaction. G(2rs) ≈ 1/10
and

σ ≈ 20
(e2

h

)( n

nimp

)
,

which increases linearly with n, as observed experimentally. We note here that for graphene on SiO2,
conductivity depends only on the charged impurity scattering concentration nimp. As a consequence, the
only way to improve the mobility on a sample with fixed rs is improving the quality of the sample.
However, we can see in the more general expression 4.14 that the conductivity depends on the substrate
dielectric constant ε. Changing the SiO2 substrate for an other with a higher dielectric constant should
increase the mobility of the sample.

They have also found that the minimum conductivity σ0 has the form

σ0 ≈ 20
(e2

h

)( n∗

nimp

)
where n∗ is the residual carrier density that manifest itself experimentally by a residual conductivity
plateau. It is deduced self-consistently using Boltzmann theory and the RPA method. The ratio n∗/nimp
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Figure 4.4 – Predicted conductivity for different values nimp. In units of 1010cm−2 they are from top to
bottom : 20 (very clean), 40, 80, 160, 320 (very dirty). Curves are offset vertically by 100e2/h for clarity.
Taken from [64].

is a monotonically decreasing function of nimp with a dependence that gets weaker for larger impurity
density. For dirty samples with nimp ≈ 3.5 × 1012cm−2, σ0 is close to the value usually observed ex-
perimentally 4e2/h and is not very sensitive to changes in disorder, whereas for cleaner samples with
nimp ≈ 2 × 1011cm−2, σ0 ≈ 8e2/h and it is sensitive to the value of nimp. Predicted values for σ0

for different impurity densities are in accordance with representative experimental results from Colum-
bia, Manchester and Maryland [64]. From these results Das Sarma et. al. concluded that the graphene
minimum conductivity is not universal and that future cleaner samples will have higher values of σ0.
The plateau at minimum conductivity comes from the effect of charged impurities near the Dirac point
which provide a inhomogeneous electron-hole puddle landscape where the conductivity is approximately
a constant over a finite range of gate voltage. Charged impurities explain also in Das Sarma’s work the
linear dependence of conductance on electronic density at high densities. Figure 4.4 shows the predicted
conductivity as a function of gate voltage for different impurity concentrations. It is seen that for dirtier
samples the linear dependence gets weaker and at the Dirac point a conductivity plateau appears. The
gate voltage corresponding to the Dirac point also gets shifted.

Experiments have been done to test if the dominant source of scattering in graphene is charged
impurities. In these experiments, transport is studied in different dielectric environments. If transport in
graphene is limited by charged impurities, changing the interaction constant α by changing the dielectric
constant of the substrate εsubs or the environment εair/vac should have a clear effect on mobility.

α =
2e2(

εsubs + εair/vac
)
~vF

C. Jang et. al. [65] have made experiments in which a water layer is added on graphene in ultrahigh
vacuum. Usually graphene transport experiments are done on SiO2 substrate with εsubs ≈ 3.9 and
εair/vac ≈ 1, which makes graphene a weakly interacting electron system with α ≈ 0.8. Adding ice
changes εair/vac to ≈ 3.2, which decreases α from ≈ 0.81 to ≈ 0.56.

Experimentally, it was observed that when adding ice, the maximum slope of σ(Vg) became steeper
and that the curve σ(Vg) became more nonlinear. As the number of ice layers increased, the mobility
increased and saturated after approximately three layers of ice to ≈ 12000cm2/V s. These results were
analyzed within Boltzmann transport theory including screening using the RPA method like in Das
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Figure 4.5 – Mobility (a), conductivity (b) and the minimum of conductivity (c) of the symmetric
conductivity characteristics of graphene as a function of the number of ice layers. Dashed lines indicate
the values for pristine graphene and arrows show the theoretical expectations for ice-covered graphene.
Taken from [65].

Sarma’s work, where conductivity depends strongly on the coupling constant α (see relation 4.14 where
α = rs). They found a very good quantitative agreement with theoretical values for the conductivity, the
minimum value for conductivity and the mobility. Figure 4.5 show these quantities as a function of the
number of ice layers and the theoretical expectations for ice covered graphene. The enhanced mobility
of graphene after adding ice was attributed to the decreased interaction between charge carriers and
impurities and the decreased screening by charge carriers.

On the other hand, experiments carried by Ponomarenko et al. [66] found no significant changes
in carrier mobility when studying graphene placed on different substrates and in high ε media. They
tried different substrates motivated by the fact that the removal of the substrate leads to much higher
mobilities, which suggests that impurities may come from the silicon oxide. Figure 4.6 a shows the electric
field effect for graphene on mica, SiO2 and PMMA. Samples have mobilities of ≈ 0.25, 0.45 and 0.8 m2/V s
respectively at n ≈ 2×1012cm−2, values that are within the sample-to-sample variations typically observed
for graphene on SiO2. They conclude that limited mobility is not directly related to the substrate but does
not discard charged impurities. Since the sample fabrication procedure was the same for all samples, one
can imagine that the concentration of charged impurities trapped underneath graphene is always the same.
To address this possibility, Ponomarenko et al. studied the effect of dielectric screening on mobility. They
argued that if transport in graphene is limited mostly by charged impurities, the strength of scattering
should strongly depend on dielectric environment and mobility should increase by at least one order
of magnitude (reaching above 100000cm2/V s) when covering graphene with glycerol, ethanol or water.
Figure 4.6 b shows the field effect on graphene first measured in He atmosphere (ε ≈ 1) and then covered
with a small droplet of glycerol (ε ≈ 42). It can be seen that glycerol significantly increased the device
characteristics making the peak in resistance narrower, more symmetric and shifting it towards zero, which
is consistent with the dielectric screening of charged impurities. Nevertheless, mobility increased by only a
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a b ca b c

Figure 4.6 – Electric field effect for graphene on top of SiO2, mica and PMMA (a), graphene on top
of SiO2 but in a helium atmosphere and after covering it with a thin layer of glycerol at room T (b).
Mobility as a function of temperature for two devices immersed in ethanol (dielectric constant of ethanol
increases from ≈ 25 to ≈ 55 with decreasing temperature). The solid curve is the theoretical temperature
dependence in the presence of Coulomb scatterers. Taken from [66]

factor of 1.6 and in higher quality devices, the increase in mobility did not exceed 30%. When depositing
ethanol (ε ≈ 25) mobility of graphene increased between a few and 50% depending on graphene’s initial
quality (for high quality samples increases were smaller). This small increase of graphene’s mobility
compared to the expected factor of 10, discredits the role of charged impurities as the limiting scatterers.

Ethanol offers the possibility of changing ε in-situ by varying temperature. Figure 4.6c shows the
mobility found by Ponomarenko et al. for two samples immersed in ethanol as a function of temperature.
As temperature decreases, ε increases reaching ≈ 55 near the freezing point. The increase of ε didn’t lead
to a significant change in mobility, which disagrees with the theoretical prediction if a Coulomb scattering
mechanism is present (see relation 4.14).

According to these results, charged impurities don’t constitute the primary source of scattering in
graphene, even if Coulomb scatterers certainly influence µ, they don’t limit it in typical devices with
µ ≈ 10 000 cm2/V s.

In C. Jang et al. experiment, a few atomic layers of ice were assumed to change the dielectric constant
of the substrate. According to Ponomarenko et al. depositing a few atomic layers is not enough, a few
nanometers of dielectric are necessary on top graphene in order to have a consistent comparison with Das
Sarma’s work.

4.3 Transport and elastic scattering times as probes of the nature of
impurity scattering in graphene

In order to gain insight into the scattering mechanism in graphene, we have extracted the characteristic
transport times τe and τtr from magnetoresistance measurements. The extraction of these times from the
data has been done by Miguel Monteverde. Their ratio gives information about the nature of scatterers
that limit transport. We have found that both times and their dependences on carrier density are very
different in the monolayer and bilayer graphene but their ratio is almost the same and independent of
carrier density. We have found, based on comparison with theoretical calculations that the main scattering
mechanism in our samples is due to strong short range resonant scatterers.
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Figure 4.7 – SEM photos of the monolayer (right) and the bilayer (left). (Samples A and B).

Samples were fabricated by exfoliation of natural graphite and deposited on a doped silicon substrate
with a 285nm thick silicon oxide. Carrier density was tuned from electrons to holes through the charge
neutrality point with a voltage applied on the backgate. Figure 4.7 shows a SEM pictures of the monolayer
and bilayer graphene studied (samples A and B). Electrodes of samples A and B were fabricated by
electron beam lithography and sputter deposition of 40nm thick palladium . Additional samples (samples
C, D and E) were fabricated using Joule evaporation of a bilayer 5nm Ti/70nm Au 3. I will mostly discuss
samples A and B, a monolayer and bilayer graphene of respective dimensions W = 1.6µm, L = 1.3µm and
W = 4.8µm, L = 0.7µm, where L is the distance between the electrodes covering nearly the entire sample
width W . The contact resistances were measured to be 20Ω for the bilayer from a four-probe measurement
and calculated of 200Ω from magnetoresistance measurements for the monolayer. The calculation was
made from two probe magnetoresistance measurements made on the monolayer, R + RC = R0 + αB2

where RC is the contact resistance and doesn’t depend on the magnetic field.
Figure 4.8 shows the conductance dependence on gate voltage for different magnetic fields. At zero

magnetic field there is a sublinear dependence of conductance on gate voltage on both sides of the neu-
trality point. The mobility varies between 3000 and 5000 cm2/V s for the monolayer and 3000 and 6000
cm2/V s for the bilayer. These values were deduced from Drude formula together with two-probe ma-
gnetoresistance measurements at low temperatures. As will be seen in the following, magnetoresistance
measurements give a more accurate method to determine transport parameters compared to using exclu-
sively the capacitance model. Above 2T , steps in the conductance of the monolayer occur near quantized
values 4

(
n+1/2

)
e2/h as expected for quantum Hall effect in graphene. The oscillations in the bilayer with

a maximum of conductance are due to the aspect ratio of the sample L/W . It is known [67] that for any
square sample (L = W ) with ideal contacts on opposite sides and longitudinal and Hall conductivities σxx
and σxy, the macroscopic conductance depends on the microscopic transport coefficients in the following
way,

GL=W =
√
σ2
xx + σ2

xy. (4.15)

When the sample is not a perfect square, the conductance problem can be reduced for any geometry, to
the one of a rectangle using a conformal mapping approach [67]. Two terminal conductance is determined
in that case by a single parameter, the aspect ratio L/W of the sample (L the distance between the

3. Samples D and E were fabricated and measured by Keyan Bennaceur at SPEC, CEA Saclay. The data from these
samples is an additional proof of the validity of our work.
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Figure 4.8 – Gate voltage dependence of the two terminal conductance at different magnetic fields for
the monolayer (top) and the bilayer (bottom). Contact resistance have been subtracted.
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Figure 4.9 – Two terminal conductance for a rectangular monolayer (top) and a rectangular bilayer
(bottom) with different aspect ratios (L/W = 0.25, 0.5, 1, 2, 4). Arrows mark the incompressible densities
which are determined by equation 4.16 for the monolayer and by equation 4.17 for the bilayer. Taken
from [67]

contacts and W the width of the sample). Abanin and Levitov [67] have studied theoretically the problem
of the two probe conductance in graphene and bilayer graphene using the analytic results for a conducting
rectangle and a semicircle model for transport coefficients σxx and σxy to which I will come later. They
have found that in a square geometry there should be a conductance plateau at the neutrality point, and
that for rectangular geometry the conductance should exhibit maxima at the incompressible densities
corresponding to quantum Hall effect for wide samples and minima for narrow samples, explaining the
oscillations we observe in our wide bilayer. They have found also that the positions and relative sizes of
these features are different for the monolayer and the bilayer, as is shown in figure 4.9. The incompressible
quantum hall densities for the monolayer and bilayer are

νn−ML = 4
(
n+ 1/2

)
|B|/Φ0, n = 0,±1,±2 . . . , (4.16)

νn−BL = 4n|B|/Φ0, n = ±1,±2 . . . (4.17)

Our measurements shown in figure 4.8 are then comparable with theoretical predictions shown in
figure 4.9. Measured conductance in the monolayer resembles the one predicted for a square monolayer.
In the case of the bilayer, the measured conductance with the maximum of conductance at the neutrality
point, resembles the one predicted for a wide bilayer (L < W ). Measurements by Williams et al. also
confirm these theoretical predictions [68].
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Figure 4.10 – Magnetoresistance measurements for the monolayer (top) and bilayer graphene (bottom)
far from the charge neutrality point. Contact resistance was subtracted in both cases.

4.3.1 Determination of the transport characteristic times

I will describe now how from magnetoresistance measurements shown in figure 4.10 we extracted τtr
and τe, which are essential to find the nature of main scatterers in graphene. To extract τtr one possibility
is using Drude formula (equation 4.10) that in case of graphene has the form

σ = 2kF vF τtr
e2

h
, (4.18)

and the capacitor model to get kF without passing by any magnetoresistance measurement,

k2
F = πn =

πC(Vg − VDP )

e
(4.19)

(C is the capacitance per unit area formed by the Si oxide and VDP the voltage corresponding to the charge
neutrality point). This approach needs only a measurement of resistance as a function of gate voltage but
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it is inaccurate. It is known that near the Dirac point puddles of electrons and holes are present in all
samples [69], which makes that the value of electronic density extracted from the capacitance model
corresponds actually to an average of the electronic density of electrons and holes puddles. Because of
this reason, we use the two terminal magnetoresistance measurements combined with Drude formula. At
low magnetic fields (see figure 4.10), quadratic magnetoconductivity yields τtr and at high magnetic fields,
when the cyclotron frequency is larger than 1/τe, the magnetoconductivity exhibits Shubnikov-de Haas
oscillations related to the formation of Landau levels. The broadening of these levels at low temperatures
yields τe.

The two terminal magnetoresistance results from the mixing of the diagonal ρxx and off diagonal ρxy
components of the resistivity tensor. The degree of mixing depends on the aspect ratio of the sample. For
a square geometry like the one of the monolayer

R(B) =
(
ρ2
xx + ρ2

xy

)1/2
, (4.20)

(which is equivalent to relation 4.15). For a short wide sample like the bilayer,

R(B) =
L

W

(
ρ2
xx + ρ2

xy

)
ρxx

. (4.21)

Abanin and Levitov developed a method to consider any intermediate geometry. It consist on calcula-
ting the net current I and the voltage drop between the two contacts V of a rectangular sample with an
arbitrary aspect ratio L/W as a function of the longitudinal and transversal electric fields in the sample
Ex and Ey. The electric field components Ex and Ey can be obtained from the real and imaginary parts
of an analytic function f(z),

Ey + iEx = −ef(z)

where

f(z) = iθ −
∑

n>0(odd)

4θ

nπ

sinh(nπiz/W )

cosh(nπL/2W )

and θ = tan−1
(
σyx/σxx

)
is the Hall angle. Integrals giving I and V have to be done carefully to avoid

singularities of f(z). At the end the two probe resistance at low magnetic fields (ωCτ << 1) can be
written in a form with a single parameter depending on the aspect ratio of the sample αg :

R(B)−R(0) = ρ0
L

W

(
ωCτtr

)2
αg (4.22)

ρ−1
0 = σ =

(
2e2

h

)
kF vF τtr

and

ωC =
eB

m∗
(4.23)

m∗ the cyclotron mass, depends on the Fermi wavevector in the monolayer and in the bilayer can be
approximated (in the range of Vg explored where |EF | ≤ 80meV [71]) by an effective mass that is
independent of the carrier density

m∗ML =
~kF
vF

m∗BL ≈ meff = 0.035me. (4.24)

The values found numerically for αg for the geometries of the monolayer and the bilayer are

αg−ML = 0.53± 0.01 αg−BL = 0.84± 0.02 (4.25)

Being able of reconstructing the two probe resistance from the longitudinal and transversal resistance is
important to deduce τtr and τe as will be seen in the following.
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Magnetoresistance at low magnetic fields : determination of τtr

At low magnetic fields (ωCτtr << 1 with ωC the cyclotron frequency) we can extract the transport
time τtr from the resistivity tensor,(

ρxx ρxy
−ρxy ρxx

)
= ρ(B=0)

(
1 ωCτtr

−ωCτtr 1

)
(4.26)

The two probe resistivity can be reconstructed from the resistivity tensor using relations 4.20 and 4.21 or
using the Abanin and Levitov approach. Given the geometry of the monolayer sample (see figure 4.7) we
can approximate the two probe resistivity by relation 4.20,

ρML ≈
√
ρ2
xx + ρ2

xy = ρ0

(
1 +

1

2

(
ωCτtr

)2)
. (4.27)

In the case of the bilayer, given its wide geometry we can make the approximation

ρBL ≈
1

σxx
=
ρ2
xx + ρ2

xy

ρxx
= ρ0

(
1 +

(
ωCτtr

)2)
. (4.28)

With ρ0 the resistivity at zero magnetic field. These two relations are actually almost identical to the
expression 4.22 deduced from Abanin and Levitov’s equations with αg given by 4.25. In order to get
τtr we have to get first kF which is implicit in the cyclotron frequency ωC through the effective mass
m∗ for the monolayer (equation 4.23). This can be done through a zero field measurement using Drude
formula which contains τtr as well (equation 4.18). We actually choose to extract kF from the period
of Shubnikov De-Haas oscillations which appear at intermediate magnetic fields as is seen in the next
subsection. Extracting kF in this way makes the calculation independent of the contact resistance, which
is very convenient (see figure 4.16).

Having kF , τtr can be determined using 4.27 and 4.28. Representing the quadratic low field magneto-
resistance (which was found to be independent of temperature between 1 and 4K), τtr can be obtained
from the slope of the curves as shown in figure 4.11. It is seen that the slope increases in the vicinity of
Dirac point reflecting the divergence of the effective mass of the monolayer near that point.

Figure 4.12 shows the transport times obtained for the different kF for the monolayer and the bilayer.
It can be seen the different kF dependence in the monolayer and the bilayer. In the case of the monolayer,
transport time increases with increasing kF while for the bilayer it decreases with increasing kF . This
comes from the different dependence on kF of the diffusion coefficient for the monolayer and the bilayer
that as was seen in the introduction, it is associated to the different physics these two systems follow.
Transport time is unknown near the charge neutrality point, and the reason is that, as was mentioned
before, in any graphene sample there are puddles of electrons and holes near the Dirac point that impede
to have access to the zero electronic density point. To illustrate this, figure 4.13 shows how sweeping gate
voltage, the value of kF jumps when approaching to Dirac point, which shows that it is not accesible
in our samples. It is also shown the electronic density dependence on gate voltage. Near the Dirac point
electronic density saturates into a non-zero value. Figure 4.12 shows also the kF dependence of τtr obtained
using the capacitance model (4.19). It is seen that this model gives false results near Dirac point. Far
from Dirac point it gives results that approach what is found with the magnetoresistance measurements.

Magnetoresistance at intermediate magnetic fields : determination of τe

Shubnikov de-Haas oscillations that appear at intermediate magnetic fields (≈ 3T ), where ωCτtr ≈ 1 or
(ωCτe ≈ 1) permit to extract the elastic collision time τe. The resistivity tensor at intermediate magnetic
fields has the form (

ρx
ρy

)
= ρ(B=0)

(
1 + 2δν/ν ωCτtr − δν/ν

ωCτtr

−ωCτtr + δν/ν
ωCτtr

1 + 2δν/ν

)
(4.29)
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Figure 4.11 – B2 dependence of the magnetoresistance in the monolayer at different gate voltages. τtr is
extracted from the slope of these curves according to 4.27. (Curves have been shifted for clarity)

where ν is the filling factor. δν/ν is an oscillatory term which can be approximated by its first harmonic
due to the formation of Landau levels,

δν

ν
= 2DT exp

(
− π

ωCτe

)
cos

(
jπEF
~ωC

− φ
)
. (4.30)

where ωC is given by 4.23 and

EF (ML) = ~vFkF EF (BL) =
~2k2

F

2m
. (4.31)

The phase φ is either π or 2π and the parameter j is 1 or 2 depending on the nature of the sample
(monolayer or bilayer). The prefactor DT describes the thermal damping of the oscillations

DT =
γ

sinh γ

with

γ =
2π2KBT

~ωC
.

δν/ν determines Shubnikov-de Haas oscillations of the longitudinal resistivity ρxx. Considering a square
geometry for the monolayer and that the bilayer is a very wide sample (like in 4.27 and 4.28) we have,

ρML = ρ
(
1 + ω2

Cτ
2
tr

)1/2(
1 +

δν/ν

1 + ω2
Cτ

2
tr

)
ρBL = ρ0

(
1 + ω2

Cτ
2
tr(1− 2δν/ν)

)
(4.32)

where ρ0 = 1/σ is the zero field resistivity. Having the two terminal resistivity ρML(B) and ρBL(B), τe
can be extracted from the exponential term in δν/ν (equation 4.30). δν/ν can be determined from the
following relations. Defining β = ωcτtr we have,

ρML

ρ0
=
(
1 + β2

)1/2(
1 +

δν/ν

1 + β2

)
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Figure 4.12 – kF dependence of the transport time for the monolayer (top) and the bilayer (bottom).
Circles show the results using magnetoresistance measurements. Squares correspond to results using the
capacitance model. The points near Dirac point for the monolayer deduced using the capacitance model
are not trustable since we do know we cannot have access to these k values due to the puddles of electrons
and holes near Dirac point.
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Figure 4.13 – Left : Values of kF found for different Vg using magnetoresistance measurements. Values
of kF near Dirac point are not accessible. Right : Vg dependence of electronic density calculated from the
values of kF (n = k2

F /π)

and defining ξ as the value of ρML/ρ0 when δν/ν = 0, ξ =
(
1 + β2

)1/2
, ρML/ρ0 becomes

ρML

ρ0
= ξ +

δν/ν

ξ

which shows how δν/ν can be determined from ρML ,

δν

ν
=

(
ρML

ρ0
− ξ
)
ξ.

In the same way, we can write for the bilayer

ρBL = ρ0

(
1 + β2

(
1− 2

δν

ν

))
and

ρBL
ρ0
− 1 = β2

(
1− 2

δν

ν

)
.

Defining ζ as the value of ρBL/ρ0 − 1 when δν/ν = 0

ζ =
ρBL
ρ0
− 1 = β2,

we have
δν

ν
=

1

2
− 1

2ζ

(
ρBL
ρ0
− 1

)
(4.33)

Figure 4.14 shows the intermediate field magnetoresistance of the bilayer fitted by equation 4.32 and the
extraction of τe from the exponential decay of oscillations (equation 4.30). δν/ν was deduced using relation
4.33 Figure 4.15a shows magnetoresistance for the bilayer at Vg = 70V at different temperatures. This
time a quadratic envelop has been subtracted. It is seen at first sight how oscillations decay as magnetic
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Figure 4.14 – Left : Resistivity of the bilayer as a function of the magnetic field at Vg = 64V fitted with
4.32 and 4.30. Right : Maximums of the Shubnikov-de Haas oscillations (circles) fitted with an exponential
function (continuous line). Figure is in log-scale. τe is deduced from the slope of the line. This procedure
is repeated on magnetoresistance measurements taken at different gate voltages.

field decreases, and how they get damped with increasing temperature. Figure 4.15b shows the fit of the
amplitude of oscillations according to factor DT appearing in relation 4.30,

DT =
γ

sinh γ
(4.34)

with

γ =
2π2kBT

~ωC
.

This fit yielded and effective mass of meff = (0.035 ± 0.002)me in the whole range of gate voltage
investigated.

From Shubnikov-de Haas oscillations we also deduced kF , which appears in the argument of the cosines
in equation 4.30. The oscillatory part of resistivity has the form

ρML/BL ∝ cos

(
jπEFm

∗

~e
B−1 + φ

)
(4.35)

The phase φ is either π or 2π and j is either 1 or 2 depending on the nature of the sample (monolayer
or bilayer). EF depends on kF for the monolayer and the bilayer (see relations 4.31) and m∗ depends
on kF in the case of the monolayer (see relations 4.24). kF extracted using this method yielded the
same values deduced using the first method. Figure 4.16 shows magnetoresistance data for the monolayer
and the bilayer represented as a function of 1/B. A quadratic envelope has been subtracted to the field
oscillations.

Figure 4.17 shows the kF dependences of τtr and the ratio τtr/τe for the monolayer and bilayer samples
(A and B) and also for the other three monolayer samples (C, D and E). C is a two terminal sample and
D and E are multiterminal samples with a Hall bar geometry.

In all cases, despite large variations of τtr, τtr/τe is nearly independent of kF . It is equal to 1.7± 0.3
for the monolayers A, C, and E and to 1.8± 0.2 for the bilayer in the whole range explored (1.5× 1011 <
n < 5× 1012).
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of a resonant impurity model which I will discribe in the next section. This model explain very well our
results. The ratio τtr/τe is near 1.8 for all the samples studied, as is indicated by the pointed line.

Having τtr/τe of the order but smaller than 2 indicates that the typical size of the scatte-
rers R does not exceed Fermi wavelength (λF > R), which correspond to short range scatte-
ring 4. (This can be confirmed coming back to relation 4.8). We note however, that sample D has a value
τtr/τe > 2 (∼= 2.4). The reason might be that the area of this sample (12µm2) is much larger than the
are of the other samples A, B, C and E (∼= 1µm2). A large sample contains more spatial inhomogeneities
than the other smaller samples which could explain the reduced value for τe.

Mobility of the different samples measured was between 3000 and 5000 cm2V −1s−1 for samples A and
B. Mobility of sample C was 4500 cm2V −1s−1. Sample D had a mobility of 2500 cm2V −1s−1 and sample
E 800 cm2V −1s−1. It is very interesting how samples with so different mobilities exhibit such a similar
ratio τtr/τe.

We also found τtr/τe ≈ 2 for the bilayer. In the case of weak short range impurities this ratio is
expected to be ∼ 1 (see 4.9). For strong short range impurities, it has not been calculated up to now.

Samples D and E were fabricated and measured by Keyan Bennaceur at CEA, Saclay. Measurements
of these samples are shown in figure 4.18. The Hall bar configuration of these samples permitted to
analize the longitudinal and Hall resistivities separately. Transport time was deduced from the ratio of
Hall resistance at low fields and zero field resistivity (relation 4.36), kF was deduced from the periodicity
of Shubnikov de-Haas oscillations as was detailed before, and τe was deduced from a semi-logarithmic plot
of the amplitude of the oscillations vs. the inverse of magnetic field, as was done for the other samples.
Expressions for the longitudinal and Hall resistivities can be deduced from the resistivity tensor (equation

4. λmin ∼ 12.6nm which means R . 12.6nm
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4.29),

δρxx(B)

ρ0
= 4DT exp

(
− π

ωCτe

)
cos

(
jπEF
~ωC

− φ
)

(4.36)

ρxy(B)

ρ0
= ωCτtr −

δρxx(B)

ρ0

1

2ωCτtr
(4.37)

Checking the values of τe using the semicircular model proposed by Abanin and Levitov

It is possible to fit the gate voltage dependence of conductance in our samples G(Vg) shown in figure
4.8 using the values of τe determined above. Curves taken at 5T are in the quantum Hall regime, this let
us use a semicircle model [67] that takes into account the contributions of the nth Landau level to the
longitudinal an Hall conductivities δnσxx(ν) and δnσxy(ν) :

δnσ
2
xx + (δnσxy − σ0

xy,n)(δnσxy − σ0
xy,n+1) = 0 (4.38)

n = . . . − 2,−1, 0, 1, 2 . . . for the monolayer and n = . . . − 2,−1, 1, 2 . . . for the bilayer and σ0
xy,n is the

quantized Hall conductivity at the nth plateau,

σ0
xy,n,ML = 4

(
n+

1

2

)
e2

h
σ0
xy,n,BL = 4n

e2

h

The longitudinal conductivity δnσxx(ν) exhibits a peak centered at the Landau level which is modeled by
a Gaussian,

δnσxx ≈ e(− ln 2(ν−(νn+νn+1)/2)/Γν)2

where Γn is the width of the Landau level function of the filling factor ν, it is related to the width of
Landau levels function of energy which depends on τe,

ΓE = ~
√

2ωC
πτe

Γν and ΓE are related through the relation

Γν = ΓE
2

~vF

√
νnΦ0

πB
.

The total conductivity tensor is given by the sum of the contributions of all Landau levels,

σxx =
∑
n

δnσxx(ν) σxy =
∑
n

δnσxy(ν) (4.39)

A good agreement is found between experimental data and the two-terminal conductivity G(Vg) for
the monolayer calculated from the conductivity tensor. For the bilayer the semicircular model is modified
into an ”elliptical” model described in [68] to take into account the rectangular geometry of the sample.
Figure 4.19 shows the fit of the gate voltage dependence of conductivity for the monolayer and the bilayer
at 5T using the semicircular model (equation 4.38) to get σxx and σxy together with the method proposed
by Abanin and Levitov (described at the beginning of this section) to get the two probe conductivity.
σxx and σxy were found using the values for τe found previously. The dashed vertical lines indicate the
positions of νn which as expected are different for the monolayer (νn = ±4(n + 1/2)) and the bilayer
(νn = ±4n). It is seen that the conductance quantization is well obeyed for the monolayer but it is only
approximative for the bilayer. This can be explained by the aspect ratio of the bilayer sample.
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Figure 4.18 – Left panel : Longitudinal resistance Rxx as function of magnetic field for sample D (top)
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exhibited a mobility µ = 2500cm2/V s while sample E had a mobility µ = 800cm2/V s
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Figure 4.19 – Comparison of G(ν) at 5T for samples A and B with the expression of conductance derived
using Abanin and Levitov’s method and the semicircular model 4.38 with the τe(k) determined above.

4.4 Comparison of our results to theoretical predictions

We have found that conductivity has a sublinear dependence on n (or Vg) as is observed in figure 4.8
contrary to what is predicted by Das Sarma et al. and Nomura et al. for charged long range impurities,
where conductivity is supposed to be linear with n. Conductivity is neither a constant with n for large
electronic densities with a minimum at low electronic densities as predicted by Nomura et al. for short
range impurities.

Concerning the characteristic transport times, it has been predicted [63] using Thomas Fermi approxi-
mation that in the presence of charged impurities, characteristic transport times should go as τkF ∝ kF
for the monolayer and it should be independent of kF for the bilayer. This is not what we have observed.
In the case of the monolayer we have seen a sublinear dependence on kF and for the bilayer τkF decreases
with kF . We have observed a ratio τtr/τe ∼ 2 for both the monolayer and the bilayer. This is in accordance
to what is expected for short range scattering for the monolayer but it differs to the predicted value for
the bilayer (see relations 4.8 and 4.9).

An alternative explanation is resonant scattering resulting from vacancies or any other kind of impu-
rities of short range R such that a ≤ R << 1/kF (a is the carbon-carbon distance). As will be seen in the
following, if scatterers are short range resonant impurities, transport time has the form

τML ≈
k ln2(kR)

nimpvFπ2
∝ k ln2(kR) τBL ≈

k ln2(kR)

nimpvFπ2
∝ ln2(kR)

which explains well our results as is seen in figure 4.17.
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4.4.1 Low energy scattering of a 2D Dirac particle on a strong impurity of short
range

If we recall the 2D scattering theory of a particle incident on a strong impurity of short range, we
can, considering that the incident particle is a massless Dirac particle (in the case of the monolayer) and
a massive Dirac particle (in the case of the bilayer) deduce the scattering cross section Atr, that gives
access to the transport time τtr as well as the conductivity leaded by these Dirac particles 5.

We consider a potential such that

U(r) =

{
V0 > 0 r < R

0 r > R
(4.40)

where V0 is the potential strength and R is the potential range. We consider an incident low energy
massless Dirac particle with wavevector k such that kR << 1 (which is equivalent to say that potential
U(r) is short range), we have that the scattering amplitude has the form

f(θ) =
ei2δ(k) − 1

i
√

2πk

(
1 + e−iθ

)
=

−
√
π/2k

J0(k̃R)

kRJ1(k̃R)
+ ln

(
2

γEkR

)
+ iπ2

(1 + e−iθ) (4.41)

where δ(k) is the s wave scattering phase shift, γE = eγ = 1.781 . . . and Jn are Bessel functions. The
wavevector k̃ is defined as

k̃ ≡ |ε− V0|
~vF

where ε = ~vFk is the electron energy and vF ≈ 106m/s in a graphene monolayer.
If the potential is weak V0 << ε and k̃ ≈ k. If the potential is strong V0 >> ε and k̃ ≈ V0/~vF . We

consider the case of a strong potential where

k̃R ≈ V0R

~vF

does not depend on k.
The differential cross section dA/dθ is given by

dA

dθ
= |f(θ)|2 =

8 sin2 δ(k)

πk

1 + cos θ

2

and the transport cross section and total cross section are

Atr =

∫
dθ(1− cos θ)|f(θ)|2 =

4 sin2 δ

k
=

1

2
A (4.42)

A =

∫
dθ|f(θ)|2 =

8 sin2 δ(k)

k
(4.43)

There is a factor 2 between the two cross sections because in graphene there is an additional factor in the
integral (1 + cos θ)/2 that suppresses back scattering. We have therefore for the monolayer τtr = 2τe. The
transport time τtr can be determined via Atr using the relation,

1

τtr
= nimpvFAtr = 4nimpvF

sin2 δ(k)

k
(4.44)

5. This model was adapted by Jean Nı̈¿ 1
2
el Fuchs. (Taken from Jean Nı̈¿ 1

2
el’s notes, see complementary material [86]).
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where nimp is the impurity density and vF the Fermi velocity. In the same way, the elastic scattering time
τe can be found from

1

τe
= nimpvFA. (4.45)

The conductivity is related to τtr by the usual relation

σ = 2
e2

h
vFkF τtr(kF ) (4.46)

In order to predict a kF dependence of τtr and σ, we have to consider different limits determined by the
three terms in the denominator of f(θ) (equation 4.41). In particular, when J0(k̃R) ≈ 0 the logarithmic
term wins. This can happen because k̃R ≈ V0R/~vF can be larger than one even if kR << 1. This is
called the resonant case even if it is not necessary to fine-tune kF to fit this condition. In this situation,
the phase shift of the scattered wavefunction has the form

δ(k) ≈ − π

2 ln(kR)
→ 0

which leads to a transport cross section

Atr ≈
4δ2

k
≈ π2

k ln2(kR)

and a transport time

τtr−ML ≈
k ln2(kR)

nimpvFπ2
∝ k ln2(kR). (4.47)

This gives a conductivity

σ ≈ 2

π
nc
e2

h

ln2
(
R
√
πnC

)
nimp

(4.48)

where k2
F = πnC ∝ Vg.

In the case of the bilayer, the differences in the calculation are : the effective mass is no longer m = 0,
the chirality factor appearing in the transport cross section is not (1 + cos θ)/2 but (1 + cos 2θ)/2 = cos2 θ
and the first term in the denominator of 4.41 is equal to zero. This gives contrary to the case of the
monolayer Atr = A and therefore τtr = τe

6. Given that

vF,BL =
~kF
m∗

with m∗ = 0.035me, τtr has a different dependence on kF for the bilayer :

τtr−BL ≈
k ln2(kR)

nimpvFπ2
∝ ln2(kR). (4.49)

Conductivity on the other hand has the same dependence on kF as the monolayer.
We conclude that considering a short range resonant impurity, leads to a conductance that increases

with Vg with logarithmic corrections for both the monolayer and the bilayer. In both cases, our extracted
τtr(kF ) is fitted very well by the square logarithmic dependence of equations 4.47 and 4.49 as is seen in
figure 4.17.

It is possible to estimate with this model the range of the impurity potential, 0.5Å ≤ R ≤ 2.5Å and
the concentration of impurities ni = (8±2)×1011cm−2, which corresponds to approximately 4 impurities
every 10000 hexagonal units. The concentration of impurities turns out to be identical for samples A and
B and it is of the order of the minimum value of the carrier density nmin = 1.5×1011cm−2, extracted from

6. This is only valid in the regime R << λF
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the experiment . It is also interesting to note that the minimum conductivity expected for this resonant
impurity model,

σmin =

(
2e2

πh

)
×
(
nmin
ni

)
ln2 (R

√
πnmin)

is 3.7e2/h for the monolayer and 4.5e2/h for the bilayer. These values are very similar to the observed
experimental values, σmin,ML = 3.3e2/h and σmin,BL = 4.1e2/h.

This analysis also corroborates our results on the ratio τtr/τe for the monolayer indicating that the
scatterers present in our samples have a range smaller than the Fermi wavelength but possibly of the order
of or slightly larger than the lattice spacing a < R << λF . We have essentially short range intravalley
scattering (since R > a)

The resonant character as mentioned before, is not essential for the validity of equations 4.47 and 4.48
for massive carriers but it is essential for massless carriers in the monolayer. It has been demonstrated in
the case of scattering centers created by vacancies in graphene over a wide range of Fermi energies [72].

4.5 Conclusions

In conclusion, our results indicate that the main scattering mechanism in our graphene samples is
due to strong neutral defects, with a range shorter than the Fermi wavelength and possibly of the order
of a, inducing resonant scattering. Likely candidates are vacancies, as observed recently in transmission
electron microscopy [73], voids, adatoms, or short-range ripples as suggested in [74]. This does not exclude
the presence of long-range charged impurities responsible for electronhole puddles but their contribution
to the scattering rates 1/τtr and 1/τe appears to be negligible in all the samples we have investigated.
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Chapitre 5

Measurement of the universal
conductance fluctuations in graphene
and bilayer graphene

5.1 Introduction

Reproducible conductance fluctuations are one of the most relevant signatures of phase coherent
transport. In a disordered coherent sample coupled to two perfect conductors, the conductance comes from
the interference of all wave packets traversing the sample. Interference phenomena between wavepackets
can be modified through an external parameter like magnetic field, gate voltage or the configuration
of impurities in the sample. This give rise to reproducible fluctuations of conductance with a universal
amplitude that is independent of the size of the sample at T = 0.

In graphene, as will be seen in this chapter, conductance fluctuations present particular features. The
amplitude of fluctuations depends on the doping and correlation functions have a special dependence on
electronic density n, depending on whether the system is made of a monolayer or a bilayer. This is due to
the different variations with n of the diffusion coefficient, illustrating the contrast between massive and
massless carriers. In addition, second order conductance fluctuations (mesoscopic rectification) as will be
discussed for graphene, can give information about the e-e interaction in a system.

5.2 Introduction to the physics of phase coherent transport

Conductance in the diffusive regime can be related to the probability distribution P (~r1, ~r2) for an
electron initially at ~r1 to reach ~r2. It can be written as

P (r1, r2) =
∑
p

ApA
∗
p +

∑
p 6=p′

ApA
∗
p′ , (5.1)

where Ap is the complex amplitude of the contribution of a path p going from r1 to r2. Ap = |Ap|eiSp/~,
where Sp is the action along a trajectory p,

Sp =

∫
p

(
~~k(~r)− e ~A(~r)

)
d~r − Edt,

and E is the energy of the trajectory. The quantities ~k(~r) and ~A(~r) are the wave vector and vector potential
along the trajectory.

In a coherent system there are interference terms in 5.1 that are associated to pairs of interfering
trajectories p and p′,

|Ap||Ap′ |ei(Sp−Sp′ )/~ = |Ap||A′p|ei∆φp−p′

73
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Figure 5.1 – In optics an interference pattern can be produced not only by a coherent light beam passing
through a circular slit (a), but also when a coherent beam passes through a disordered optical medium
(b)

where ∆φp−p′ is the phase difference between two trajectories. This phase shift depends on the Fermi
energy or the magnetic flux Φ through the sample in the following way

∆φp−p′(E) =
1

~
EF (tp − tp′) =

1

2
kF (Lp − Lp′) (5.2)

≈ EτD
~

∆φp−p′(B) =
1

~

∫
p
e ~A(~r)d~r − 1

~

∫
p′
e ~A(~r)d~r (5.3)

= 2π∆Φp−p′/φ0

where tp − t′p is the travelling time difference between the paths p and p’ and it is in average the typical
diffusion from r1 to r2, τD . ∆Φp−p′ is the magnetic flux enclosed between the two trajectories p and p’
and Φ0 = h/e is the flux quantum [1].

Thus changing Fermi energy on the sample or imposing a magnetic flux through the sample has an
influence on the phase difference between two electronic trajectories. As a result conductance is modulated,
giving rise to reproducible conductance fluctuations. Conductance fluctuations can also be generated
by changing the microscopic configuration of disorder in the sample.

Reproducible conductance fluctuations have their origin in the interference of electronic wavepackets.
They are analogous to the interference pattern produced by a coherent light source. When a coherent
light source passes through a circular slit a well defined interference pattern appears, like the one showed
in figure 5.1. When there is a random static medium, interferences are still produced giving rise to an
spleckled interference pattern. In the case of electrons, conductance plays the role of the intensity of light
and the configuration of impurities in a metal plays the role of a disordered optical medium [2].

When changing the Fermi energy or the magnetic flux through the sample, a complete phase rando-
mization of the electronic wavepackets traversing the sample is achieved when ∆φp−p′ is of the order of
2π, which gives (using equations 5.2 and 5.3)

EF =
h

τD
= EC (5.4)

Bp−p′ =
Φ0

S
= BC (5.5)

where τD and S is the typical time and area over which interference occur. h/τD is called the Thouless
energy.

If many paths contribute to the interference, and the change in Fermi energy or magnetic field is
EF > EC or Bp−p′ > BC , the amount of fluctuations is the same as the one produced by a complete
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Figure 5.2 – Data from numerical simulations on a 100 × 10 site Anderson model taken from reference
[19]. Sample to sample fluctuations, fluctuations in g(B) and g(E) are compared. Fluctuations are similar
in all three cases supporting the ergodic hypothesis in diffusive conductors.

rearrangement of disorder inside the sample, which means that fluctuations are ergodic. The hypothesis
that in metals equivalent fluctuations are caused by changing impurity configuration, magnetic field or
energy is called the ergodic hypothesis and it is supported by analytical and numerical calculations. Figure
5.2 shows data from numerical simulations [19] comparing sample to sample fluctuations, fluctuations in
magnetic field and fluctuations in energy. The size of fluctuations is roughly the same in all three cases,
giving a qualitative support to the ergodic hypothesis.

If interference effects are associated to a given configuration of disorder, one would expect that they
disappear upon averaging over disorder (or over different sweeps of gate voltage or magnetic field). Ac-
tually, after averaging over disorder, traces of phase coherent transport persist. Even in optics, when
the speckle pattern is averaged over different realizations of disorder there is still a signature of phase
coherence reflected on an angular dependence of the light intensity.

If the probability 5.1 is averaged over disorder, the phase of the first term is equal to zero independently
of the disorder and thus survives after averaging. This first sum corresponds to the Drude conductivity
and it is called diffuson. It is associated to pairing trajectories like those shown in figure 5.3 a).

P (r1, r2)Cl =
∑
p

|Ap|2. (5.6)

Most of the terms in the second sum of 5.1 average to zero, some others survive like the one represented
in figure 5.3 b) where pairing trajectories that have followed identical series of collisions cross forming
a loop. The two trajectories corresponding to the two different possible circulations around the loop
(clockwise or counterclockwise) interfere constructively. The distribution of these crossed trajectories in
opposite directions is associated to the probability of returning to the origin (O in the figure), which
constitutes a correction to the classical Drude conductivity 5.6. The probability of returning to O is
enhanced (return probability) which reduces the probability of reaching r2. This results in a negative
correction to the conductance which is called the weak localization correction. The existence of a weak
localization correction to conductance shows that even after averaging over disorder, there remain traces
of phase coherence. However, these reversed trajectories acquire a phase if a flux is applied in the loop.
Conductance recovers then its classical value giving rise to positive magnetoconductance on a field scale
corresponding to a flux quantum in a coherent region of the sample.

Lets return to universal conductance fluctuations and discuss their universal amplitude [2]. A classical
metallic conductor of size L >> Lφ

1 can be considered as a statistical ensemble of N independent

1. Lφ is the phase coherent length, the characteristic length over which electronic wavepackets are coherent and can
present interference phenomena.
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r1
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r2

a)

b)

r2

O

Figure 5.3 – Example of electronic trajectories contributing to 5.1

subsystems N =
(
L/Lφ

)d
where phase coherence is preserved in each subsystem (d is the dimension of

the system). In such a disordered conductor, any measured quantity is equivalent to an average over the
different realizations of disorder. One would expect that a cubic system of side L should present relative
fluctuations of conductance

√
〈δG2〉/ 〈G〉 of the order of 1/

√
N ,√

〈δG2〉
〈G〉

∝
(Lφ
L

)d/2
.

Since the average conductance is given by Ohm’s law, 〈G〉 = σ0L
d−2, we expect a variance of conductance

fluctuations of 〈
δG2

〉
∝ Ld−4.

Thus, fluctuations in a classical metallic conductor disappear in the macroscopic limit L→∞ (for d ≤ 3).
In contrast, systems with a size L < LΦ (systems in the mesoscopic regime) present conductance

fluctuations with an amplitude that is universal and independent of disorder and sample size,〈
G2
〉
− 〈G〉2 ≈ e2/h.

The reason is that again, below LΦ interference effects are important.
If we neglect any process of phase coherence loss (Lφ & L) we can write the multichannel Landauer

formula for the adimensional conductance g = G/(e2/h) in terms of t, the transmission matrix for a
plane-wave going through a multichannel scatterer as shown in figure 5.4.(For br = 0 ar = tal).

g = 2Tr
{
tt+
}

The trace Tr {tt+} cannot be expressed within multiplicative eigenvalues since t is non-multiplicative (for
two consecutive segments 1 and 2, t12 6= t1t2). Contrarily, the transfer matrix T defined as(

ar
br

)
= T

(
al
bl

)
, (5.7)

is multiplicative and its eigenvalues can be written as powers of the eigenvalues of some matrix. The trace
Tr {tt+} can be related to the trace of the matrix TT+, so the adimensional conductance g is essentially
determined by multiplicative eigenvalues. Because of disorder in our mesoscopic system we choose T to
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al aral ar

bl brbl br

Figure 5.4 – Scheme of a multichannel scatterer. The amplitude of the N incoming channels from the
left (right) are given by the components of the vector al (br). The amplitude of outgoing channels is given
by bl (ar).

MeffMeff

1/ξ 1/ξ 1/L1/ξmax 1/ξj 1/L

M

Figure 5.5 – Scheme of the eigenvalues of the random matrix tt+

be a random matrix. It can be shown [17] that Tr {tt+} =
∑M

j=1 x
L
j where xj are real, positive and

smaller than unity eigenvalues of some random matrix and L the size of the sample, for large L only
the eigenvalues close to the unity will remain. Eigenvalues xj smaller but closer to unity can be written
as e−L/ξj where 1/ξj+1 − 1/ξj is the spacing between eigenvalues and L is the size of the sample with
ξj >> L. We can write,

g = 2

N∑
j

e−L/ξj .

From the theory of random matrices we know that eigenvalues have tendency to repel each other, which
means that the probability of having two eigenvalues close to each other goes to zero, or that the probability
of having degenerate eigenvalues is zero. As is represented in figure 5.5, the first eigenvalue is determined
by 1/ξmax and the last one by 1/L. ξmax, the localization length is known to be of the order of Mle
where M is the total number of channels. Considering that eigenvalues are more or less equally spaced,
the number of eigenvalues Neigen is given by

Neigen =
1/L

1/ξmax
=
Mle
L

Since the eigenvalues e−L/ξj are of the order of unity, the conductance is actually determined by Neigen

eigenvalues which correspond to the number of effective channels Meff .

g = 2Neigen = 2Meff = 2
Mle
L

If L = le, Meff = M and g = 2M which correspond to a ballistic system. If L = ξ, Meff goes to unity,
which is the case of a strongly localized, single channel system.

The amplitude of conductance fluctuations is given by the square root of the variance of g, which is
thus the variance of the number of effective channels. This is of the order of unity, as can be proved using
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the results of random matrices theory. The transfer matrix T is a random matrix like TT+, appearing
in the calculation of Tr {tt+}. One of the results of the random matrix theory is that for any quantity g
expressed in terms of a sum over some smooth function f of the eigenvalues xj ,

g =
N∑
j=0

f(xj)

the variance of g over the appropriate ensemble of random matrices is given by〈
g2
〉
− 〈g〉2 = 2

∫ ∞
−∞
|t|φ(t)φ(−t)dt

where φ(t) is the Fourier transformation of f(t), φ(t) =
∫∞
−∞ f(x)exp(−2πixt)dx. Using this result, the

variance of the dimensionless conductance var(g) was found to be of the order of unity and independent
of L, N and le, which constitute the universality of conductance fluctuations [17].

The exact prefactor of the variance of conductance fluctuations depends on the symmetry of the
random matrix. An orthogonal symmetry corresponds to a situation with no magnetic field and a spin
degeneracy. In this case var(g) ≈ 4. In the presence of a magnetic field var(g) ≈ 2, time reversed symmetry
is broken and symmetry is unitary. If magnetic field breaks spin degeneracy as well, var(g) ≈ 1. If there
is a strong spin orbit coupling, var(g) ≈ 1 and the symmetry is symplectic.

Contrary to metals, in the case of disordered insulators where only a small number of paths contribute
to transmission, conductance fluctuations are no longer universal, the ergodic hypothesis is no longer
verified and conductance fluctuations are log-normal distributed instead of being Gaussian (i.e. lnG
has a Gaussian distribution, see figure 5.19). Figures 5.6 A and B show conductance fluctuations in a
GaAs :Si wire in the strongly localized regime where fluctuations are non-ergodic [18]. In this regime, the
fluctuations as a function of gate voltage have a different variance with respect to fluctuations as a function
of magnetic field, var(lnR)H ≈ 0.22 < var(lnR)V g ≈ 1.10. Figure 5.6 shows also conductance fluctuations
near the Anderson transition (C and D), where ergodic hypothesis becomes valid, var(lnR)H ≈ 0.19 ≈
var(lnR)Vg ≈ 0.27. Observing panels A and C (or B and D in log scale) we can contrast non-ergodic
conductance fluctuations with ergodic ones. It can be seen in figure A that fluctuations as a function of
voltage are very different from the fluctuations as a function of magnetic field.

Reproducible conductance fluctuations have been observed in semiconductors, silicon mosfets, Si doped
GaAs and GaAs-GaAlAs heterostructures. In doped GaAs where it is possible to change the configuration
of impurities through annealing, uncorrelated conductance fluctuations as a function of the magnetic field
for different arrangements of the impurities have been observed [3]. In silicon mosfets where the Fermi
energy can be tuned with a gate voltage, uncorrelated magnetoconductance traces have also been observed
for gate voltages that correspond to a shift in chemical potential of the order of EC [4]. In this system,
gate voltage dependent and magnetic field dependent conductance fluctuations have been observed to
have an identical variance, in accordance with the ergodic character of conductance fluctuations.

Graphene is an interesting system to study universal conductance fluctuations thanks to the extraor-
dinary advantage of being able to tune the Fermi energy and the diffusion coefficient over a large carrier
density range, passing from electron to hole carriers. From the theoretical point of view, numerical simu-
lations have shown that the amplitude of conductance fluctuations in graphene depend on the disorder
in the sample [5]. They find a large enhancement of the sample to sample fluctuations above the UCF
value. In contrast, the variance of the energy dependent fluctuations doesn’t show this enhancement and
agree with the UCF prediction. The origin of this result has been understood as a percolation transition,
to which I will return later. These results show that the ergodic hypothesis does not hold in graphene.

It has also been shown that the amplitude of fluctuations depends strongly on the type of disorder,
depending on if it produces intervalley or intravalley scattering [6]. A model based on percolating current
patterns has been introduced in [7] to explain the scaling dependencies of the conductance on doping and
disorder.



5.2. INTRODUCTION TO THE PHYSICS OF PHASE COHERENT TRANSPORT 79

Figure 5.6 – Conductance as a function of gate voltage Vg and field H in a 3D plot for a GaAs :Si
wire. Low conductances give non-ergodic conductance fluctuations (panel A linear scale and B log scale).
Moderate conductances give ergodic conductance fluctuations (panels C and D). Taken from [18].

On the experimental side, several groups have reported reproducible conductance fluctuations (CF) in
graphene [20]-[25]. They have observed CF in transport measurements [20]-[24] and also by scanning probe
microscopy [25]. In transport measurements the fluctuations have been used as electron thermometer [23]
and also to resolve spin transport in graphene [24]. K. Kechedzhi et. al. in [23] have proposed a method
to measure the temperature of electrons in a mesoscopic conductor through the correlation function of
UCF. From energy dependent fluctuations measured at different temperatures the correlation energy can
be extracted, which is proportional to kBT with T the electron’s temperature (if the Thouless energy
ETh < KBT ). Lundeberg et. al. have reported in [24] that the application of a magnetic field produces a
Zeeman splitting of conductance fluctuations that is reflected in an offset in gate voltage of spin-up and
spin-down conductances. This allows one to distinguish each spin contribution in CF.

On the scanning probe microscopy side, Berezovsky et. al. have reported reproducible CF versus
scatterer position. When a charged tip is near the surface of graphene, an image charge is created that
acts as a movable scatterer. An image of the sample conductance vs. tip position provides a spatial
“fingerprint” that is unique to the arrangement of scatterers at a given Fermi energy.

The experiments showed in the following represent the first complete analysis of CF in graphene. We
study their correlation and amplitude as a function of Fermi energy and magnetic field for a monolayer
and a bilayer graphene. These two systems with similar resistivities and mean free paths present different
diffusion coefficients due to their different dispersion relations. Taking advantage of the possibility of tuning
the Fermi energy in graphene, we measure conductance fluctuations at different Fermi energies, finding
specificities for the monolayer and bilayer. We have also studied second order conductance fluctuations,
which provide a probe of Coulomb interaction and screening, an important issue in graphene. In the
following, I will discuss the correlation functions and the amplitude of fluctuations for magnetic field
dependent and energy dependent CF. I will also discuss in detail experiments on second order CF, which
constitute a first measurement in a diffusive mesoscopic system.
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Figure 5.7 – Reproducible conductance fluctuations as a function of the gate voltage for the monolayer
and bilayer graphene taken at 67mK. An excitation current of 100nA was used.
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Figure 5.8 – SEM images of the monolayer and bilayer graphene measured.

5.3 Correlation functions of conductance fluctuations and their depen-
dence on diffusion coefficient

Figure 5.7 shows reproducible conductance fluctuations measured for the monolayer and bilayer gra-
phene as a function of gate voltage, far from the Dirac point (charge neutrality point CNP) at T = 60mK.
At first sight they look alike, but it is only through the correlation function that a difference is revealed
based on the different physics of transport in these two systems. Figure 5.8 shows SEM images of the two
samples measured 2. In the theory of mesoscopic diffusive samples, the characteristic energy scale ente-
ring in the correlation function for energy dependent conductance fluctuations is the Thouless energy if
(T < ETh). As mentioned before, complete phase randomization is achieved in the sample when there is a
shift of the Fermi energy larger than Ec (or ETh the Thouless energy). This characteristic energy is related
to the time scale in which electrons diffuse across the sample and become sensitive to its boundaries (τD).

2. Contact resitances for these samples were : 200Ω for the monolayer and 20Ω for the bilayer as is specified in the
preceding chapter.
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Figure 5.9 – Vg dependence of the diffusion coefficient calculated from D = v2
F τtr/2. Vg dependence of

τtr was extracted from magnetoresistance measurements shown in chapter 4.

It is defined in terms of the diffusion coefficient, Ec = ~D/L2
min where L2

min is the area where quantum
interferences occur and Lmin = min(L,LT , Lφ) with L the length of the sample, LT =

√
~D/kBT the

temperature characteristic length and Lφ the phase coherent length. The diffusion coefficient is defined
as D = vF ltr/d = v2

F τtr/d (vF is the group velocity of the electrons’ wave function at the Fermi level, d
is the dimension of the system and τtr is the time that takes an electron before being backscattered).

For magnetic field dependent fluctuations, complete phase randomization is achieved when B > Bc =
φ0/S where S is the surface of the sample perpendicular to the magnetic field. S is given by LminWmin

with Wmin = min(W,LT , Lφ).

As was mentioned in the introduction, near CNP monolayer graphene has a linear dispersion relation
E = ~vFkF with a constant Fermi velocity, while bilayer graphene has a quadratic dependence on kF ,
E = ~2k2

F /2m
∗ (m∗ = 0.03me) with a Fermi velocity that depends on the Fermi level, vF = ~kF /m∗.

The diffusion coefficient has also a very different gate voltage dependence in the monolayer and bilayer
graphene as is shown in figure 5.9. This can be seen through the density of states. Diffusion coefficient
can be written as D = σ/

(
e2ρ(EF )

)
, where the density of states ρ is linear in kF

3 for the monolayer and
it is a constant for the bilayer (ρML = 4

hvF
kF and ρBL = 2m

~2π ). If we consider that conductivity σ goes

like k2
F (within a correction of Ln2(kF ) 4), we have different dependencies for the diffusion coefficient in

the monolayer and bilayer, DML ∝ kF ∝
√
Vg and DBL ∝ k2

F ∝ Vg, as can be checked in figure 5.9.

In order to compare with the theory for diffusive mesoscopic systems, correlation functions were
calculated. Experimental data consisted of conductance measurements taken as a function of the gate
voltage or magnetic field. In the case of the gate voltage dependent fluctuations, sweeps of 3V were taken
varying the average electronic density at each sweep using the gate voltage. As can be seen in figure 4.13
a variation of 3V corresponds to a variation of maximum 5% in electronic density n far from Dirac point ;
near the Dirac point, the electronic density is constant. A variation of 3V correspond to a variation in

energy of dE = 15V
−1/2
g dVgmeV , which is maximum ∼ 45meV . This is big enough compared to the

average Thouless energy, which is 0.17meV . In conclusion, a sweep in gate voltage of 3V gives us a good
enough statistics and an electronic density almost constant. For the magnetic field dependent fluctuations,

3. Far from the charge neutrality point
4. The origin of this correction is detailed in the first chapter
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Figure 5.10 – Red thick curves were measured around Vg = V0 the Dirac point. Thin blue lines correspond
to measurements far from Dirac point, Vg−V0 = 40.5V in the monolayer and Vg−V0 = 15V in the bilayer.
The Dirac point is at Vg = 15.5V for the monolayer and at V g = −6V for the bilayer. Panel b) shows the
reproducibility of conductance fluctuations.

sweeps were made from −0.4T to 0.4T also at different average electronic densities. The conductance is
symmetric in magnetic field as expected for a two probe measurement, due to time-reversal invariance.
Figure 5.10 shows some sets of data analyzed. A line was subtracted to remove the average conductance.

The correlation field and gate voltage was determined in the following way. We calculated the discrete
Fourier power spectrum of the fluctuations as a function of k, the conjugate variable of B or Vg for
each set of field or gate voltage data corresponding to a given average carrier density. The Fourier power
spectrum is the average square of the modulus of the Fourier transform. It gives us the correlation
function of fluctuations in Fourier space (thanks to the property of Fourier transform for a convolution of
two functions F

(
f ? f

)
= |F

(
f
)
|2).

Each data set yielded exponential-like functions which are shown in figure 5.11. They correspond in
the direct space to a Lorentzian correlation function,

F−1
{
e−xc|k|

}
= 2xc/

(
x2
c + 4πV g2

)
.

Correlation energies and fields xc were deduced from the exponential decay exp(−kxc) at low k of the
Fourier power spectrum. From the semilog representation in figure 5.11 we have xc = (ln10 ∗ slope)/2π.
The relation between the correlation energy Ec and the correlation gate voltage Vc for the monolayer is
given by the expression

EcML = ~vF

√
πC

4eVg
Vc,

since E = ~vF
√
πCVg/e (C is the capacitance per unit area). In the case of the bilayer, the correlation

energy is given by

EcBL =
~2πC

2em∗
Vc

where m∗ is the effective mass in the bilayer m∗ = 0.03me.

We now compare the variations of Ec and Bc to the predictions Etheoryc and Bφ. As it was already
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g

mentioned these quantities depend on the diffusion coefficient,

Etheoryc =
~D
L2
min

Bφ =
Φ0

LminWmin
where Lmin = min(L,LT , Lφ) Wmin = min(W,LT , Lφ)

Lmin and Wmin correspond to the typical longitudinal and transverse lengths of interfering trajectories.
LT =

√
~D/kBT is the thermal coherence length and LΦ the phase coherent length. In the density range

investigated LT varies between 1.2µm-1.7µm for the monolayer and between 0.7µm-1.4µm for the bilayer.
This calculation as well as the one for ETh and BΦ was done using the diffusion coefficient D = v2

F τtr/2
(Figure 5.9), where vF = ~k/0.035me for the bilayer and vF = 106m/s for the monolayer. τtr (and vF
in the case of the bilayer) was extracted using the magnetoresistance measurements shown in chapter 4.
They provide accurate values for τtr near the charge neutrality point. Having calculated LT , we could
compare this length with the dimensions of the samples shown in figure 5.8 and we determined which of
these lengths was the smaller length Lmin (and Wmin). We conclude that Wmin = LT and Lmin = L and

therefore Etheoryc = ETh.

To verify that the correlation energy and magnetic field have the expected dependence on the gate
voltage, we have plotted along with the experimentally deduced Ec and Bc, the ETh and Φ0/(LLT )
deduced from the diffusion coefficient extracted from magnetoresistance measurements shown in chapter 4.
As is shown in figure 5.12 the correlation energy extracted from the experimental data follows Ec = 5ETh.
The correlation field follows Bc = 6Φ0/(LLT ) for the monolayer and Bc = 4Φ0/(LLT ) for the bilayer as
shown in figure 5.13.

These dependencies can be understood through the diffusion coefficient, represented in Figure 5.9.
Using the Drude formula, σ =

(
e2v2

F /2
)
τρ(EF ) the diffusion coefficient can be written in terms of the

density of states at the Fermi level ρ(EF ), which has a different dependence for the monolayer and bilayer
graphene.

D = σ/
(
e2ρ(EF )

)
.

In theory, for a perfect sample, the density of states is independent of Vg for the bilayer and it goes like
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Figure 5.12 – Correlation energy for the conductance fluctuations in the monolayer and bilayer. Dots
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√
Vg for the monolayer,

ρML(EF ) =
2

~vFπ
kF =

2

~
√
πvF

√
n ρBL(EF ) =

2m

~2π

(where n = εrε0
ed Vg). We have found that the conductivity varies with gate voltage like

σ ≈ 2

π

e2

h

nln2
(
R
√
πn
)

nimp

where nimp is the density of impurities in graphene. If we approximate the variation of σ as linear, we
can check in figure 5.12 that

EcML ∝
√
Vg and EcBL ∝ Vg.

Similarly, the correlation magnetic field Bc ∝ Φ0/(LLT ) is expected to vary like

BcML ∝
1√
DML

∝ 1

V
1/4
g

and BcBL ∝
1√
DBL

∝ 1

V
1/2
g

as can be checked in figure 5.13.

5.4 Amplitude and non-ergodicity of conductance fluctuations in gra-
phene

Figure 5.14 shows the variance δG1 of energy dependent and magnetic field dependent conductance
fluctuations in the monolayer and bilayer graphene. The amplitude of the Vg-dependent conductance
fluctuations is larger near the Dirac point. In contrast, the B-dependent fluctuations do not depend
significantly on the density n for the monolayer. Thus, conductance fluctuations in graphene are non
ergodic 5. This might be a consequence of the spatial inhomogeneities of n close to Dirac point. In a good
conductor (large g), changing the Fermi energy is equivalent to changing the disorder configuration, and
induces Gaussian conductance fluctuations of order e2/h. In graphene on the other hand, it has been
shown [8] that near Dirac point the system breaks into conducting puddles of electrons and holes, and
transport takes place along an intricate percolating network of these n- and p-type regions. Indeed, strong
fluctuations of the local charge density and conductivity near Dirac point can be modeled by a network
of n-type and p-type regions with finite transparency [7].

Rycerz et. al. [5] have found numerically that the variance of conductance fluctuations due to variations
in trajectories in the sample are enhanced when changing disorder. They do not find such an enhancement
for fluctuations due to wavefunction phase shifts. Figure 5.15 shows the calculated variance of conductance
as a function of disorder strength for sample to sample fluctuations and energy dependent fluctuations.
A large enhancement appears of the sample to sample fluctuations above the UCF value. In contrast,
the variance of the energy dependent fluctuations doesn’t show this enhancement and agrees with the
UCF prediction. The origin of this result has been understood as a percolation transition. The presence
or absence of a percolating trajectory produces large sample to sample fluctuations in the conductance
that can increase with increasing kF or ξ (the impurity range) as has been observed in simulations.

As remarked by Rycerz et. al. sample to sample fluctuations contain contributions from variations in
phase shifts but mostly from variations in trajectories, which gives rise to an enhancement of conductance
fluctuations. On the other hand, in energy dependent fluctuations variation in phase shifts gives the
dominant contribution, which results in conductance fluctuations that don’t get altered with changing
disorder. In our experiment, when we change the gate voltage near Dirac point, we change not only

5. We believe that both B-dependent conductance fluctuations and Vg dependent conductance fluctuations have their
origin in interference between electronic trajectories
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Figure 5.14 – Amplitude of the conductance fluctuations compared to the gate voltage dependent re-
sistance. The Vg-dependent fluctuations (filled symbols) are larger near the Dirac point for both the
monolayer and bilayer graphene(panels c) and d)). Error bars are the standard deviation of the difference
of two different sweeps, dashed lines are guide for the eyes. The Vg-dependent fluctuation amplitude
changes with Vg in a qualitatively similar way as the resistance. The B-dependent conductance fluctua-
tions (open triangles) does not change much with Vg.
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Figure 5.15 – Variance of conductance as a function of disorder strenght. Filled symbols give V arG
of the sample to sample fluctuations. Open symbols correspond to to the variance of energy dependent
fluctuations. Taken from [5]

the Fermi energy (EF ) but also the configuration of puddles of electrons and holes in the sample and
thus the percolating trajectories responsible for interferences. We explain our results shown in figure 5.14
considering that energy dependent CF 6 near Dirac point come from percolating trajectories and that
magnetic field dependent CF come from variation in phase shifts.

We find that the amplitude of magnetic field dependent CF is (0.4 ± 0.1)e2/h. Theory predicts [9]
δG = 0.7

√
W/Le2/h when the distance between electrodes is smaller than LT . This yields 1.2e2/h for

the monolayer which is three times the measured value.

Figure 5.16 shows measurements of energy dependent CF at different temperatures. It can be seen
that the amplitude of conductance fluctuations is smaller with increasing temperature. We also analyze
the dependence of the correlation energy with temperature. At low temperatures the correlation energy
is close to the Thouless energy (as expected, the correlation energy at low temperatures is fixed by the
Thouless energy). When temperature increases, the correlation energy follows as expected, KBT . This
differs from the results of Kechedzhi et al. who found that in the regime kBT >> ETh the correlation
energy follows αkBT with 2.7 < α < 2.9 for nanoribbons. The discrepancy with this result might be due
to the geometry of our sample, which consists of a wide junction instead of the nanoribbon investigated
by Kechedzhi et al. (see figure 5.8).

Figure 5.17 and 5.18 show the histograms of conductance for gate voltage dependent and magnetic field
dependent conductance fluctuations. Histograms were made from different sets of data (two to four sets
of data each time) like those showed in figure 5.10. In the case of Vg dependent conductance fluctuations
histograms were calculated from data over a range of 6V near the Dirac point (2000 data points) and a
range of 12 V far from Dirac point (4000 data points). We had good statistics given that the correlation
energy ranges from 0.10meV to 0.21meV (near and far Dirac point respectively) and a change of 1V in
gate voltage corresponds to a change of ∼ 15meV in energy, which is ten times bigger. For conductance
fluctuations in the monolayer as a function of magnetic field the calculation was made from data taken
at three different voltages near and far from Dirac point (12000 data points). In the case of the bilayer

6. Only those generated by a phase shift by the gate voltage
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Figure 5.16 – Conductance fluctuations measured for different temperatures in the bilayer near the
Dirac point. Fluctuations’ amplitude is smoothed with increasing temperature as expected (left). Right :
Temperature dependence of the correlation energy. Correlation energy is represented for data taken far
from the Dirac point (red squares, 24V ≤ Vg − VD ≤ 27V ) and at an intermediate gate voltage (black
triangles 9V ≤ Vg − VD ≤ 12V ). Continuous horizontal lines represent Thouless energy in each region.
kBT is represented as a pointed line for reference. (Correlation energy was calculated from experimental
data using the capacitance model, contrary to the experimental correlation energy shown in figure 5.12
which was calculated using magnetoresistance measurements. Magnetoresistance data was not available
to calculate the correlation energy at different temperatures.)
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Figure 5.17 – Histograms of the gate voltage dependent conductance fluctuations for the monolayer with
a Dirac point at 15.5V (panels (a) and (b)) and bilayer graphene with a Dirac point at -6V (panels (c)
and (d)). In all the cases they follow a Gaussian distribution (continuous line)

calculations were made with data at a single gate voltage value (4000 data points). In all the cases they
follow a gaussian distribution, contrary to the log-normal distribution characteristic of a system going
through an insulating transition. Figure 5.19 shows the difference between a Gaussian and a log-normal
distribution. In a log normal distribution,

P (f(x))
df(x)

dx
dx = P (lnx)

d lnx

dx
dx

with f(x) = ln(x) and P a Gaussian distribution. This gives the expression shown in the top of figure
5.19. An example of the distribution of fluctuations in an insulating system is shown in figure 5.20. It
corresponds to a 1D GaAs device.

5.5 Weak localization

As was said at the beginning of this chapter, in a quantum coherent system, electron waves that
propagate in opposite directions, form a loop and interfere at the point of intercept, have a zero phase
difference that is independent of disorder. Upon averaging over disorder these pairing trajectories give
rise to a negative correction of the conductance called the weak localization correction. However, these
time reversed trajectories acquire a phase in the presence of a magnetic field, which results in a positive
magnetoconductance. The bilayer presents such positive magnetoconductance as a signature of weak
localization. In the monolayer on the other hand, because the Berry phase is π instead of 2π like in the
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Figure 5.18 – Histograms of magnetic field dependent conductance fluctuations for the monolayer with
its Dirac point at 15.5V (panels (a) and (b)) and bilayer graphene with its Dirac point at -6V (panels (c)
and (d)). For the bilayer graphene the statistics are poorer.
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bilayer, backscattering is suppressed and there is a positive correction of the conductivity called weak
antilocalization correction, leading in the presence of a magnetic field to a negative magnetoconductance.

In graphene (and the bilayer) weak localization has the remarkable feature that it is sensitive not
only to inelastic processes (phase breaking associated to τφ) but also to elastic scattering mechanisms
like intervalley scattering (τi), associated to sharp defects like the edges of the sample, that are able to
scatter electrons between the two valleys and intravalley scattering (τ∗). The following formula shows how
magnetoconductance ∆σ(B) = σ(B) − σ(B = 0) in the monolayer and the bilayer is controlled by the
inelastic and elastic rates τ−1

φ , τi and τ∗,

π~
e2

∆σ(B) = F

(
τ−1
B

τ−1
φ

)
−F

(
τ−1
B

τ−1
φ + 2τ−1

i

)
∓ 2F

(
τ−1
B

τ−1
φ + τ−1

i + τ−1
∗

)
. (5.8)

(The third term is negative for the monolayer and positive for the bilayer). In the case of the monolayer
negative magnetoconductance and thus antilocalization is determined by the negative third term. If there
is no intervalley nor intravalley scattering (τi, τ∗ → ∞) the first two terms of 5.8 cancel each other and
∆σ(B) is controlled by the third term, resulting in antilocalization. If on the contrary, there is strong
intravalley and intervalley scattering (small τi and τ∗) both negative terms are suppressed and the first
term dominates which gives rise to a positive magnetoconductance and thus electron localization. What
favors antilocalization in graphene are then small ratios τφ/τ∗ and τφ/τi. This can be achieved by increasing
the temperature which decreases τφ or lowering the carrier density which increases τi. Antilocalization
is destroyed if there is intravalley scattering (τi >> τφ >> τ∗). However, if intervalley scattering is
possible (τi ∼ τφ >> τ∗) then weak localization occurs. Figure 5.21 shows magnetoresistance curves of a
monolayer taken at different gate voltages and at different temperatures. It is seen that near Dirac point
where there is few intervalley scattering (small τ−1

i ) antilocalization is strong and gets more pronounced
with increasing temperature as expected.

In the case of the bilayer, weak localization always occurs due to the positive sign of the third term
of 5.8. If there is no intervalley nor intravalley scattering, the first two terms of 5.8 cancel each other
and magnetoconductance is reduced to the third term which results in the conventional form of weak
localization (positive magnetoconductance). Figure 5.21 shows the average magnetoconductance of a
bilayer near Dirac point at different temperatures. It is seen that weak antilocalization is never present
in contrast to graphene.

We have studied weak localization in our samples. Figure 5.22 shows reproducible conductance fluctua-
tions (σ(Vg, B)−σ(Vg, B = 0)) near Dirac point and far from Dirac point and the average of conductance
fluctuations in these two regions. We see that weak localization is present and it seems to be more pro-
nounced far from Dirac point. However, the few curves we disposed of (only five) impeded us to do a
valuable conclusion. In this five curve avearge we didn’t see any trace of antilocalization in graphene. Fi-
gure 5.23 shows reproducible conductance fluctuations as a function of the magnetic field for the bilayer.
We have averaged 5 curves at different electronic densities. We can see a positive magnetoconductance
signature of weak localization that gets smoothed with increasing temperature. Figure 5.23 shows data
from a second junction on the same sample. Average over different curves shows also the presence of weak
localization.

5.6 Second order nonlinear conductance fluctuations

In a mesoscopic sample the disorder potential breaks spatial inversion symmetry which gives rise to
the existence of a non-zero second order conductance (mesoscopic rectification). There is then a non-linear
term that appears in the I-V relation, I = G1V +G2V

2. This non-linear term was predicted theoretically
[10] and measured experimentally [11] in the 80’s and more recently it has been proved theoretically that
it gives information about e-e interactions in the sample both in chaotic [12] and diffusive systems [13].
Second order conductance is characteristic of systems lacking spatial inversion symmetry and they stem
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Figure 5.21 – Left : a) Resistivity as a function of the carrier density for a MONOLAYER. b), c) and d)
show the evolution of the average magnetoconductance at different electronic density regions (indicated
by bars in a)) and different temperatures. Solid curves correspond to fits of equation 5.8. Taken from
[83]. Right : Average magnetoconductance for the BILAYER near Dirac point at different temperatures.
Dashed curves are fits using only the first term of equation 5.8 and solid lines are fits using the first two
terms. Taken from [84]
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Figure 5.22 – Top : Magnetoconductance curves (G(B)−G(B = 0)) for the monolayer near Dirac point
and far from Dirac point. Bottom : Averaged curves.
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Figure 5.23 – Left : Magnetoconductance curves (G(B) − G(B = 0)) for the bilayer at different gate
voltages (near and far Dirac point). Average of these curves is shown below with the average of sets of
three curves taken at 1K and 4K. Right : Magnetoconductance curves for a second junction in the same
sample. Below is shown the average of these curves.
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from current-induced changes in the carrier density, which in turn, via Coulomb interaction, modify the
electrostatic potential landscape, thereby inducing a current-dependent conductance.

A mesoscopic graphene sample presents no spatial inversion symetry (because of the random position
of impurities) that allows the observation of the second order conductance, which can be used as a probe
of screening and interactions, a subject of great interest in graphene.

5.6.1 Physical origin of the non linear conductance

When a bias voltage is applied to the sample, charges are accumulated around impurities and sample
edges. The change of local electronic density is proportional to the injected current through a certain
function h(~r), dn(~r) = h(~r)I and modifies locally, via Coulomb interactions, the electrostatic potential
throughout the sample by dUdis(γint, V ) where γint quantifies e-e interactions. Electrons passing in the
neighborhood of the impurity feel the variation of the electrical potential and are dephased by [27]

dφ ∼ 1

~

∫
dUdes

(
~r(t)

)
dt

This expresses the fact that the electronic phase accumulated along the trajectory is very sensitive to any
change in the disorder. This dephasing will have a signature in conductance fluctuations through a non
linear contribution that is bias dependent,

G = G
[
Ueq
]

+ dG
[
dUdis(γint, V )

]
where Ueq is the potential in zero bias. Linear conductance is then given by

G1 = G
[
Ueq(~r)

]
and second order conductance,

G2 =

(
∂dG

[
dUdis, V, γint

]
∂V

)
V=0

If a magnetic field B is applied, dipoles formed around impurities rotate in a different direction
depending on the sign of magnetic field. More generally, the electronic density in the sample dn(B) has
an odd component in magnetic field which changes locally the potential dUdis(γint, V ). As a consequence, in
the presence of interactions, G2 acquires both an odd and an even component in magnetic field, contrary
to the linear conductance G1 which is symmetric in magnetic field and follows the Onsager relations.
The amplitude of these components have been calculated theoretically for a diffusive samples with weak
interactions [13] and for a chaotic cavity [12]. For diffusive systems the amplitude of the symmetric and
antisymmetric components of G2 can be written [16] :

δGS2
∼= δG1

e

ETh
δGAS2 (Φ) ∼= γint

δG1

g
f
( Φ

Φc

)
δGS2 (5.9)

where g = 〈G1〉 is the average conductance and δG1 ' 1 the typical amplitude of G1 fluctuations, both
in units of e2/h. f is a function such that f(x) = x for x � 1 and f(x) = 1 for x > 1. ΦC = BCS with
BC the typical scale of conductance fluctuations (this corresponds to a quantum flux through the area
defined by the coherent trajectory of electrons in the sample. See equation 5.5). (For a cavity with narrow
apertures, ΦC = BCS/

√
nt with nt the number of incoherent electronic trajectories in the cavity 7). In an

open system on the other hand ΦC = BCS.

7. nt = τdw/τTh with τdw the time that the electron is in the cavity (τdw = h/(N∆)) and τTh the coherent time
(τTh = h/ETh)
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γint quantifies e-e interaction and is defined differently by Spivak and Zyuzin and by Sanchez and
Büttiker. Spivak and Zyuzin, who considered a weak interaction regime define γint as :

γint =
2νdUdis(~r)

dn(~r)
� 1

(where ν is the density of states per unit surface) while Sanchez and Büttiker, in a self consistent treatment
of Coulomb interaction, define γint by :

γint =
Cµ
C

=
1

1 + C∆/2e2
(5.10)

where Cµ is an electrochemical capacitance and C is a geometrical capacitance. Cµ is related to the
electronic compressibility 1/Cµ = 1/C + ∆/2e2 and is defined rigorously in reference [12]. ∆ is the
average separation between energy levels. According to Sanchez and Büttiker γint characterizes screening.
γ = 0 correspond to no screening and γ = 1 to good screening and thus an important e-e interaction. The
theory of Sanchez and Büttiker find the good agreement with experiments in quantum dots [14].

The ratio r between the symmetric variance δGS2 and the antisymmetric variance δGAS2 is predicted
to be independent of conductance in ballistic systems. (δGS2 =

(
e2/h

)(
e/(gETh)

)
[15]) but in diffusive

systems it should vary like
δGAS2

δGS2
=
γint
g

since δGS2 =
(
e2/h

)(
e/ETh

)
. Conductance g is in units of e2/h. The factor 1/g suggests that the field

asymmetry should be detectable in systems with low conductance and it should not be observable in
metallic mesoscopic samples. We have observed in graphene that r significantly decreases with carrier
density, in contrast to ballistic GaAs/GaAlAs rings [16] where r was nearly independent of the conductance
g.

5.6.2 Measurement of the non-linear conductance

The non-linear conductance G2 was measured from the first and the second harmonics response
V1 cos(ωt) and V2 cos(2ωt) to a current excitation I0 cos(ωt) 8.

G1 = I0/V1 and G2 = 2V2I0/V
3

1 , (5.11)

where V2 = R2I
2
0/2. The relation for G2 is deduced from Ohm’s law to second order V = R1I +R2I

2,

V = R1I +R2I
2 (5.12)

= R1

(
I0 cosωt

)
+R2

(
I0 cosωt

)2
= R1

(
I0 cosωt

)
+R2I

2
0

(1 + cos 2ωt

2

)
(5.13)

= V1 cosωt+ V2 cos 2ωt+
R2I

2
0

2

where

V1 = R1I0 and V2 =
R2I

2
0

2
. (5.14)

From 5.12 we can write, neglecting second order terms,

V

R1
= I +

R2

R1
I2

V

R1
= I +

R2

R1

( V
R1

)2

I =
1

R1
V − R2

R3
1

V 2

8. Measurements were done in a two-terminal geometry
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Figure 5.24 – GAS2 and GS2 near and far Dirac point for the monolayer. Curves were vertically offset for
clarity.

by definition I = G1V +G2V
2. Thus we can deduce using 5.14,

G1 =
1

R1
and G2 = −2V2I

V 3
1

When measuring the first harmonic we were careful to keep I0 low enough so that the relation between
V1 and I0 was constant. For the second harmonics a quadratic dependence of V2 with I0 was checked.

Figure 5.24 shows the antisymmetric part GAS2 and the symmetric part GS2 of conductance fluctuations
as a function of magnetic field at two different carrier densities (near and far the Dirac point) for the
monolayer. The antisymmetric part and the symmetric part were extracted from data using the relations
GAS2 =

(
G2(H) −G2(−H)

)
/2 and GS2 =

(
G2(H) + G2(−H)

)
/2. It can be noticed at first sight that the

amplitude of the antisymmetric part near the Dirac point is more important than the one far from the
Dirac point.

Figure 5.25 shows the ratio of the odd to even amplitude of the second order conductance fluctuations

r = δGAS2 /δGS2 . The ratio r should go like
δGAS2

δGS2
= γint

g as predicted by the theory for diffusive systems

(equation 5.9). γint can be calculated for graphene using expression 5.10.

γint =
1

1 + C∆/2e2
. 1 (5.15)

where C is the capacitance formed between graphene and the backgate and ∆ is the spacing between
energy levels dE/dN . In graphene E = ~vFkF and N the total number of conduction electrons in the
sample.

N = 2 · 2 ·
πk2

F(
2π
Lx

)(
2π
Ly

)
then kF =

√
πN/(LxLy) (factor 4 counts for spin and valley degeneracy) and

∆ =
dE

dN
= ~vF

√
π

LxLy

1

2
√
N
. (5.16)

The number of electrons in graphene is given by the capacitance model,

Q = CV

N =
CVg
e

(5.17)
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so replacing 5.16 and 5.17 in equation 5.15 we have

2e2

C∆
=

2e2

C

2

~vF

√
LxLyCVg

πe

=
4e2

~vF

√
LxLyVgd

ε0εRLxLyπe

=
4e2

~vF

√
Vgd

ε0εRπe
(5.18)

thus,

γint ML =
1

1 + ~vF
4e2

√
ε0εRπe
Vgd

=
131
√
Vg

1 + 131
√
V g

,

(where γ is dimensionless and Vg is in Volts). The interaction constant in the monolayer γint ML has a
very small dependence on the gate voltage, γint ≈ 1 over the entire electronic density range investigated,
within less than 4/1000. Screening is strong, even close to the CNP where γ = 0.996. We attribute this to
the puddles of electrons and holes near the CNP which makes the Dirac point unaccessible in our samples.
We conclude that in graphene the ratio of the odd to even amplitude of the second order conductance
should go as r ∝ 1/g.

In the case of the bilayer, the spacing between levels is

∆BL =
~2π

2mLxLy

and

γint BL =
1

1 + ~2πε0εr
4me2d

,

which is equal to 0.999, corresponding to a strong screening. γint is for the bilayer independent of gate
voltage in contrast with the monolayer.

Figure 5.25 shows the gate voltage dependence of r (the odd to even amplitude of the second order
conductance). It follows 1/g with a multiplicative factor 7. This factor compared to 1 expected for L = W ,
may be due to the large aspect ratio of the sample (L = 0.8µm and W = 2.7µm). The reason is that δG1

enters in the calculation of r,
δGAS2

δGS2
∝ δG1

γint
g

and the value of δG1 is ≈ 1 for a square sample but depends on the aspect ratio, δG1 ≈ 0.7
√

W
L (with

W/L in our case 3.4). However we find a value for δG1 which is 1/5 of the predicted value. Each point
in figure 5.25 was calculated taking into account the reproducibility of two different scans, quantified in
NoiseAsym and NoiseSym. Noise is calculated from the variance of the difference of two different scans,

NoiseAsym/Sym =
1

2

1

N − 1

N∑
i=1

(
xup − xdn

)2
the factor 1/2 comes from the fact that noise in two different scans is not correlated, as is shown in the
following. Each scan can be written like xup = x+ δxup and xdn = x+ δxdn then xup− xdn = δxup− δxdn
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Figure 5.25 – The ratio r = δGAS2 /δGS2 extracted from data is compared to 7/g (continuous line). Data
correspond to a monolayer.

and 〈
|xup − xdn|2

〉
=

〈
|δxup|2

〉
+
〈
|δxdn|2

〉
− 2 〈δxupδxdn〉

= 2
〈
|δxnoise|2

〉
(5.19)

then 〈
|δxnoise|2

〉
=

1

2

〈
|xup − xdn|2

〉
= NoiseAsym(Sym).

The asymmetry is calculated using

r = Asymmetry =

√
V arAsym −NoiseAsym
V arSym −NoiseSym

,

where the variance of the symmetric and antisymmetric part of the second order conductance, V arAsym
and V arSym is the average of two different scans up and dn,

V arAsym(Sym) =
V arup + V ardn

2

where

V arup,dn =
1

N − 1

N∑
i

(
xi − 〈x〉

)2
.

We estimate the error bars in figure 5.25 calculating δr/r. Considering

r =

√
V arAsym
V arSym

,
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we have

δr

r
=

1

2

δr2

r2

=
1

2

V arSym
V arAsym

[NoiseAsymV arSym + V arAsymNoiseSym
V ar2

Sym

]
=

1

2

[NoiseAsym
V arAsym

+
NoiseSym
V arSym

]
but the noise of the symmetric part is 10 to 30 times smaller than the variance of the symmetric part, we
consider then only the first term which gives us an expression to quantify error bars for the asymmetry r

δr

r
=

1

2

NoiseAsym
V arAsym

.

5.7 Conclusion

In conclusion we have shown that mesoscopic graphene samples exhibit conductance fluctuations which
Fermi energy- and B-dependent correlation functions can be described by theoretical predictions for dif-
fusive systems over a wide range of carrier concentration, for both monolayer and bilayer. The different
behaviors of the correlation energy and fields are intimately related to the fundamentally different dis-
persion relations of both systems. A significant increase of the amplitude of the Fermi energy-dependent
fluctuations is observed close to the neutrality point, whereas the B-dependent fluctuation amplitude is
nearly constant over the entire carrier density range. This nonergodicity of fluctuations may be attributed
to the particular disorder due to electron and hole puddles in graphene near the charge neutrality point.
Finally, we have measured the second-order nonlinear conductance. We have exploited the tunability of
graphene’s conductance to find that its field asymmetry decreases with g, in agreement with theore-
tical predictions for diffusive systems. This indicates strongly screened electron-electron interactions in
graphene
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Chapitre 6

Superconducting proximity effect in
graphene

6.1 Introduction

The superconducting proximity effect in a normal metal gives signature, just as universal conductance
fluctuations, of coherent transport in a sample. In a superconductor-normal metal-superconductor junction
(SNS) for example, the normal part must be coherent, for both electrons composing each Cooper pair
in the superconductors to be able to be transmitted simultaneously and in a coherent way . Choosing
graphene as a normal metal lets graphene acquire superconducting properties by proximity effect, opening
somehow a bridge between relativity and superconductivity in a real material.

The particularity of choosing graphene as the normal metal, comes from its band structure. Graphene,
with an electron band and a hole band that touch each other at a point, opens the possibility (through a
process called Andreev reflection) of having each electron forming an Andreev pair belonging to a different
band. This phenomenon is predicted to have an experimental signature although as will be seen in the
following, experimental conditions to be in this regime are hard to attain.

In this chapter I will expose an experiment done in a superconductor/graphene/superconductor junc-
tion in which superconductivity was induced in-situ in graphene by changing gradually the transparency
between the superconducting electrodes and graphene. In a second part I will talk about experiments
where superconductivity is induced in graphene by superconducting islands on top of graphene. In this
regime it is possible to observe a metal-insulator transition mediated by superconductivity.

6.2 Introduction to the physics of the Josephson effect and the super-
conducting proximity effect

When there is a potential barrier between two metals, electrons can tunnel if the potential is not large
enough to localize electrons at one side or the other of the barrier. An insulator between two metals for
example, forms a potential barrier. In this case, the tunneling probability becomes important when the
thickness of the insulator is of the order of some atomic layers or less, giving rise to a tunneling current I
that is proportional to the voltage difference across the barrier V . The junction behaves then as an ohmic
resistance, I = GV (figure 6.1). If instead of two normal metals, there are two superconductors separated
by an insulating barrier (SIS junction), at zero temperature there is no transport of quasiparticles until
V = 2∆/e where ∆ is the superconducting gap. In this situation, the quasiparticle density of states of
both superconductors contributes to the tunnel current which exhibits a discontinuity (figure 6.2). Figure
6.3 shows data from such a SIS junction. It is made from two tunnel junctions in series, it has the form
Ta/Pt/I/Graphene/I/Pt/Ta where I is an insulating barrier. Data shows the differential conductance
versus applied dc voltage. A tunnel gap of 250µeV appears which closes with magnetic field, as is expected

103
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I
N-I-N junction

I

eV

eV

Figure 6.1 – Normal-insulating-normal junction with its I-V characteristics. Taken from [28].

S-I-S junction
S-I-S junction

eU

2∆

Figure 6.2 – Superconductor-insulator-superconductor junction with its I-V characteristics. Taken from
[28].
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Figure 6.3 – Left :Differential conductance characteristics for a tunnel junction made of graphene and
Pt/Ta/Pt electrodes. Curves correspond to 0T, 2T, 3T and 4.8T. Right : Evolution of the superconducting
gap with magnetic field.

for a superconducting gap. 1. It closes at 4.8T , which is lower that the maximum magnetic field that is
supposed to preserve the superconducting state according to the Clogston criteron (H < 2∆/µB = 8.7T
with µB = e~/2me).

If in the place of an insulating barrier forming a tunnel junction, we have a normal metal with a good
contact with the superconductors (an SNS junction), there are two experimental signatures that indicate
the transport of Cooper pairs through the normal metal or a superconducting proximity effect . One
is multiple Andreev reflections and the other is the Josephson effect.

In a bias voltage configuration, when the junction is polarized with a voltage bigger than two times the
superconducting gap, V > 2∆, electrons cross the junction as quasiparticles, like in the tunnel junction.
If instead V < 2∆ electrons arriving to the N-S interface cannot enter as quasiparticles because there are
no quasiparticle states in the gap. Instead, they are reflected back into the normal metal as holes, thus
transferring a charge 2e across the interface to the superconductor. This is called Andreev reflection and
occurs if the metal is coherent enough. More precisely, electrons enter as evanescent states in the gap
which decay into the condensate over a distance ξ, the superconducting characteristic length [29].

Electrons coming from the normal metal with an energy eV < 2∆ when approaching the superconduc-
tor will be Andreev reflected several times (multiple Andreev reflections MAR), gaining at each reflection
a potential energy eV. The energy needed to do n reflections is eV = 2∆/n (with n the number of Andreev
reflections) as is shown in figure 6.4. The experimental signature of Andreev reflections shown in figure
6.5. Data corresponds to an SNS juction where the normal part is made of graphene. Each time a voltage
of 2∆/n is imposed to the junction, transport is favored in the junction as explained in figure 6.4, and
there is a maximum in conductance.

The second manifestation called Josephson effect, appears when there is a good interface between the
superconductor and the phase coherent normal part (a better interface than in the case shown in figure
6.5). In this case a current biased configuration is adopted and no applied voltage is needed in order to
have transport through the junction. In 1962 Josephson predicted that a supercurrent I should flow at

1. In this section there are no specificities associated to graphene.
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a) b) c)

Figure 6.4 – To illustrate multiple Andreev reflections, density of states of the two superconducting
electrodes are represented. If a voltage V ≥ 2∆/1 is imposed, there is single charge transfer as shown in
a). The transmitted electron gains an energy of eV provided by the voltage source. b) shows the case when
a voltage eV ≥ 2∆/2 is imposed .An electron coming from the normal metal cannot find an empty state in
the right electrode and is reflected into a hole, which gains an energy eV. In this case two electron charges
are transfered from left to right. For voltages eV ≤ 2∆, there are multiple reflections before the electron
(or hole) finds an empty state in the right (or left) electrode. c) shows a three charges transfer. Two
charges are transfered after a first Andreev reflection and a third one at the second Andreev reflection. In
this case, the condition for the electron to find an empty state in the right electrode is no longer eV ≥ 2∆
or eV ≥ ∆ but only eV ≥ 2∆/3. (Taken from [32])
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Figure 6.5 – dV/dI characteristics of a SNS junction showing multiple Andreev reflections. In these data,
the normal part is graphene. The superconducting electrodes are made of Pt/Ta/Pt (3nm/70nm/3nm).
Different curves correspond to different back gate voltages.
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Figure 6.6 – dV/dI characteristics of an SNS junction. A dissipationless current crosses the sample at
zero applied voltage (V=0). In these data, the normal part is made of graphene

zero voltage (V=0) between two superconductors separated by a thin insulating barrier, with the form

I = IC sin(θ1 − θ2) (6.1)

where θ1 − θ2 is the phase difference of the superconductors. In this process, each pair of electrons
forming Cooper pairs in the superconductor tunnels simultaneously in a coherent way between the two
superconductors and not like quasiparticles. The Josephson effect has been observed not only in tunnel
junctions but also in weak links, where current flows along a conducting, either normal or superconducting
material. These are for example superconducting point contacts, proximity effect bridges, SNS junctions.
In the SNS case, the pair correlation that characterizes the two superconductors can penetrate well into
the neighboring conductor material only if it is phase coherent (Lφ > L), this is an important aspect of
superconducting proximity effect.

Under these conditions, a collective state is formed between the two superconductors through the
normal junction which means that it is possible to form a Cooper pair with two electrons belonging to
two different superconductors. This leads to a finite superconducting current even if there is no voltage
applied to the junction. Josephson current is carried by Andreev coherent states that are formed in the
normal part. These states come from the quantization of the difference of two wavevectors, the one of
the incident electron in the S-N interface and the one of the reflected hole. The spectrum of Andreev
coherent states determines the supercurrent through the sample. The experimental signature of such a
supercurrent is shown in figure 6.6. dV/dI characteristic reveal a current that goes through the junction
with zero resistance.

The Josephson relation for the superconducting current (equation 6.1) can be found from the expres-
sion for the energy in the tunnel junction. It is proportional to ∆1×∆2 or ψ1×ψ2 (ψ1/2 being the “wave
functions” including all the Cooper pairs in superconductor 1 or 2). It can be written in the following
way given that ψ1/2 = |ψ1/2|eθ1/2 with θ1/2 the phase of the superconductors [28],

E = C

∫
dxdy

[
|ψ1(r)ψ2(r)| − 1

2

(
ψ1(r)ψ∗2(r) + ψ∗1(r)ψ2(r)

)]
= 2C

∫
dxdy|ψ1(r)ψ2(r)|

[
1− cos(θ1 − θ2)

]
(6.2)
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Figure 6.7 – Geometry of an SNS junction in the presence of a magnetic field.

where C is a constant and x-y is the plane of the junction (see figure 6.7). If a magnetic field described
by the potential vector A = −Byx̂ is applied , thanks to Gauge invariance, energy can be written :

E = C

∫
dxdy|ψ1(r)ψ2(r)|

[
1− cos

(
θ1 − θ2 +

2πΦ(y)

Φ0

)]
since the phase difference induced by the magnetic field is the magnetic flux Φ(y) through the area y× d.
(Φ(y) =

∫
Axdx = Byd).

The sensibility of the energy to a magnetic flux induces a current density, thus we can write

j = −δE
δΦ

=
2π

Φ0
C|ψ1ψ2| sin

(
θ1 − θ2 +

2πΦ(y)

Φ0

)
,

which in the absence of magnetic field gives the Josephson relation

j = jc sin(θ1 − θ2).

When a magnetic field is applied, the Josephson current tries to screen the magnetic field. If B||z
considering that the junction is in the x-y plane as shown in figure 6.7, the measured current can be
written as

I = Lz

∫ Ly

0
j(y)dy

= Lz

∫ Ly

0
jc sin

(
θ1 − θ2 +

2πByd

Φ0

)
dy (6.3)

= jc
φ0Lz
Bl

[
cos(θ1 − θ2)− cos

(
θ1 − θ2 +

2πBLyd

Φ0

)]
= Ic

Φ0

πΦ
sin
(πΦ

Φ0

)
sin
(
θ1 − θ2 +

πΦ

Φ0

)
and the maximum current the junction can hold is

Imax = Ic

∣∣∣∣sin(πΦ/Φ0)

πΦ/Φ0

∣∣∣∣ . (6.4)

This expression is represented in figure 6.8. The current is zero each time the magnetic flux in the sample
is a multiple of the flux quantum. This form is known as the Fraunhoffer diffraction pattern by analogy
with the light intensity through a narrow rectangular slit.
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Figure 6.8 – Dependence of the maximum Josephson current in the junction as a function of the magnetic
flux through the junction.

6.3 Predictions for the superconducting proximity effect in graphene

I will discuss in the following the superconducting proximity effect in graphene. The specificity of the
superconducting proximity effect in graphene comes from Andreev reflections. Electron-hole conversion
is different in graphene thanks to its band structure. The two members of the Cooper pairs k and −k
belong to two different valleys. Moreover, the fact that the electron and hole band touch each other in
graphene an bilayer graphene opens the possibility of having incident electrons and reflected holes that
participate in Andreev reflections belonging to different bands.

Andreev showed [52] that the electron hole conversion at a NS interface is associated to a retroreflec-
tion, in which the reflected hole retraces the path of the incident electron. In graphene on the other hand,
it has been suggested [30] that Andreev reflection can be specular, which means that for the reflected
hole, only the component of velocity perpendicular to the interface changes sign. A scheme of both types
of reflections is shown in figure 6.9. Figure 6.10 shows the process of Andreev reflections in graphene.
An electron excitation which is a filled state at energy ε above the Fermi energy EF is converted into
a hole excitation that corresponds to an empty state at ε below EF . For ε below the superconducting
gap, the reflected hole is the empty state left by the electron that is paired with the incident electron to
form the Cooper pair [31]. Andreev reflection is an elastic process, so the excitation energy ε of electron
and hole is the same. In graphene, electron and hole come from opposite corners of the Brillouin zone
±K in order to form a Cooper pair with zero momentum (they have time reversed trajectories). Figure
6.10 represents the case where electron and hole belong to the same band (ε < EF ), corresponding to a
traditional Andreev retroreflection. When ε > EF the hole is an empty state in the valence band rather
than an empty state in the conduction band, giving rise to an interband Andreev reflection, which gives a
specular reflection. This kind of reflection does not occur in usual metals where the Fermi energy is very
large, and is hard to reach the valence band.

The linear dispersion relation of graphene can be written in terms of the excitation energy ε = |E−EF |
of electrons and holes participating in Andreev reflection

ε = |EF ± ~v
(
δk2
x + δk2

y

)1/2| (6.5)



110 CHAPITRE 6. SUPERCONDUCTING PROXIMITY EFFECT IN GRAPHENE

Figure 6.9 – Andreev retroreflection at the interface between a superconductor and a normal metal (left
panel) and specular Andreev reflection in graphene (right panel). Solid and dashed lines correspond to an
electron or a hole respectively. Arrows indicate the direction of velocity. Taken from [31]

Figure 6.10 – Representation of electron and hole excitations in the conical band structure of graphene.
An electron in K cone is converted into a hole in the -K cone by Andreev reflection at the boundary with
the superconductor. The electron and hole have equal energies ε = |E − EF |. (Taken from [31])
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where the ± sign corresponds to excitations in the conduction or valence band. From this expression we
can deduce the sign of velocity of the reflected hole. Lets consider an interface graphene-superconductor
at x = 0 and electrons approaching from x > 0 like in figure 6.9. δky and ε are conserved upon reflection,
thus equation 6.5 gives four different δkx. The reflected state will be a superposition of these solutions.
The velocity vx of the reflected state has to be positive, then only the δkx that has a positive derivative
~−1dε/dδkx (the expectation value of the velocity vx) will be part of the reflected state. Only two δkx
give a positive slope, one corresponding to an electron excitation and the other to a hole excitation. The
reflected hole can be an empty state in the conduction band (ε < EF ) or an empty state in the valence
band (ε > EF ). A conduction band hole moves opposite to its wave vector, so vy changes sign and also
vx (retroreflection). In contrast, a valence band hole moves in the same direction as its wave vector, so vy
remains unchanged and only vx changes sign (specular reflection).

In the following, I will explain more in detail the origin of these two types of reflections using figure
6.11. Let’s start with Andreev retro-reflections (top). This type of reflections occur in graphene when it is
sufficiently doped so that Fermi energy is far from the Dirac point. An electron e1 in valley +K is coupled
to an electron e2 in valley −K to form a Cooper pair (electrons e1 and e2 have opposite k). Equivalently,
we can say that e1 is reflected into the hole h2 associated to e2. To place h2 in the figure, I take into
account that khole = −kelectron and that the hole’s band is inverted with respect to the electron’s band
(εh(kh) = −εe(ke)). It can be checked that ky is conserved in the reflection, kye1 = kyh2 . Knowing that

the components of velocity can be written like vx = ~−1dε/dkx and vy = ~−1dε/dky it can be deduced
from the figure that an incident electron with vx < 0 and vy > 0 will be reflected into a hole with vx > 0
and vy < 0, which corresponds to a retroreflection.

In the case of specular Andreev reflection, the Fermi energy is near the Dirac point. Near Dirac point,
the state of electron e1 coming from valley +K has a time reversed state with respect to electron e2 in
valley −K. (It can be checked in both figures that e1 and e2 have opposite velocities). An electron e1 is
reflected into the hole h2 associated to e2. h2 is time reversed with respect to e2, it has an inverted band
structure with respect to e2 and it has an opposite k with respect to e2 except that ky > 0, since ky must
be conserved in the reflection. Under these conditions, an incident electron with vx < 0 and vy > 0 is
reflected into a hole with vx > 0 and vy > 0 which corresponds to a specular reflection.

Andreev retroreflection creates between the two superconductors localized states known as Andreev
levels, while Andreev specular reflection creates propagating modes that contribute to thermal transport
along the channel (see figure 6.12).

The experimental signature of specular Andreev reflections should be found in the dIdV characteristics
according to the calculations of Beenaker et. al.. Figure 6.13 shows the calculated differential conductance
as a function of a normalized V . It has a singularity at eV = ∆0, as in any SN junction, but it has
a different form and value for retroreflections and specular Andreev reflections. When the Fermi energy
is large with respect to the superconducting gap (EF >> ∆), or equivalently the Fermi wavelength is
small with respect to the coherent length of the superconductor, there are Andreev retroreflections and
the anomaly in the dIdV characteristics is a peak. When the Fermi energy is small (∆ >> EF ) specular
Andreev reflections dominate and the peak gets reduced in the normalized conductivity from 2 to 4/3.
Figure 6.14 shows the crossover between retroreflection and specular reflection. It happens in a non-
monotonous way. When the Fermi energy is tuned close to the Dirac point becoming smaller than the
superconducting gap, the peak associated with Andreev retroreflections becomes a dip when EF ≤ ∆0. It
can be remarked that the differential conductance vanishes at eV = EF since when the excitation energy
equals the Fermi energy (ε = EF ) there is no Andreev reflection for any angle of incidence. Experimentally
this crossover should be observed when changing the Fermi energy through gate voltage.

Some experiments have been done on graphene connected to superconducting electrodes, but none of
these have found signatures of specular Andreev reflections. Xu Du et. al. [33] and Hubert B. Heersche
et. al. [34] have observed a Josephson effect in a superconductor-graphene-superconductor junction. They
have measured a supercurrent that is modulated by a gate voltage and that can flow at zero charge
density, near the Dirac point. The supercurrent is, depending on the gate voltage, carried by electrons in
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Figure 6.11 – Andreev reflections in graphene for ε < EF (top) and ε > EF (bottom). Both valleys are
represented (+K,-K) since electrons participating in Andreev reflections in graphene come from different
valleys. Electrons are represented with filled circles and holes with empty circles. Arrows represent the
velocity of propagation. Inspired from [46].
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Figure 6.12 – Bound states states versus propagating modes in Andreev reflections
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Figure 6.13 – Normalized differential conductance at the interface between normal and superconducting
graphene. Electron hole conversion is predominantly retroreflection for λF << ξ (dashed curve) and
specular Andreev reflection for λF >> ξ (solid curve). Taken from [30]
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Figure 6.14 – Differential conductance for different ratios EF /∆0. The asymptotic cases EF /∆0 → 0,∞
are represented by dashed curves [30].

the conduction band or holes in the valence band. At finite bias they have found a subgap structure in
the differential resistance due to Andreev reflections. Figure 6.15 shows the gate voltage dependence of
supercurrent and dV/dI characteristics observed by Heersche et. al.. Shailos et. al. [35] have also observed
anomalies in the dV/dI characteristics associated with Andreev reflections (peaks in resistance and not
dips like in the others works). They have seen a sharp dip at zero resistance bias but no Josephson current
was detected probably because of the large distance between the electrodes (> 2µm).

6.4 Tuning the proximity effect in a superconductor-graphene- super-
conductor junction

One of the factors that have inhibited the observation of the particular Andreev reflections in graphene
is the spatial inhomogeneities of doping. Near Dirac point, some regions of the sample have EF > ∆ and
others EF < ∆. Dirac point is then larger than the superconducting gap, δEF >> ∆. The observation of
specular Andreev reflections requires the combination of superconducting electrodes with larger gaps and
also a lower local density in graphene, which means cleaner graphene samples. It has been shown that a
way to improve the quality of graphene samples is annealing. One way of doing annealing is increasing
the temperature of the sample to 100-900̊ C in a vacuum chamber. A second way is through current.
This technique consist in running a current of the order of several mA through graphene in most of the
cases at low temperatures, inside the cryostat. This procedure removes contamination adsorbed on the
surface of graphene or causes adsorbed impurities migrate to the edges. The current density applied to the
sample through annealing is in general of the order of 108A/cm2. Figure 6.16 shows AFM images taken
by J. Moser et. al. of a freshly exfoliated graphene sample that has been submitted to current annealing.
After a first annealing, impurities migrate to the center of the sample. After a second one (bias voltage
applied is V=4.6V), the area between source and drain becomes as smooth as the substrate [36]. Moser
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Figure 6.15 – Left : color plot of the dV/dI versus current I and gate voltage Vg. Yellow corresponds to
zero resistance. Supercurrent at Dirac point is finite. The asymmetry of the supercurrent with respect to
the Dirac point was also seen in the normal state conductance, which is represented by the blue line. Right :
Differential resistance dV/dI showing dips below the superconducting gap. They appear at V = 2∆/en
and correspond to multiple Andreev reflections. Taken from [34]

et. al. also found that annealing has an influence on the sample doping, as is shown in d). After annealing
the minimum of conductance which was not reachable before with gate voltage, moved close to Vg = 0.
The sample changed from being hole doped to being weakly doped, opening the possibility of modulating
carriers from electrons to holes through gate voltage. Experiments on suspended samples [37] have shown
that annealing leads to an enhancement of mobility and a narrowing of the Dirac point, which was not
observed for annealing on samples on substrate. The reason is that in suspended samples impurities are
not trapped between substrate and graphene and impurities from both sides of the graphene sheet are
free to desorb. Annealing on unsuspended graphene however, has shown to improve the cleanliness of the
sample and also the quality of electrical transport.

6.4.1 Current annealing as a dial for the superconducting proximity effect

We have found that annealing improves the quality of the graphene/superconductor contact and
gradually changes the signatures of the superconducting proximity effect. Subgap anomalies become better
defined after each anealing and at the end a supercurrent is induced in graphene.

In this experiment the sample was fabricated as usual, using exfoliated graphene deposited on a doped
silicon substrate with a 285-nm-thick oxide. Raman spectroscopy confirmed that the sample was made
of a single layer. Electrodes were made of a trilayer of Pt/Ta/Pt (3/70/3 nm) using e-beam lithography
and lift-off. Platinum (used as a sticking layer to graphene) and Tantalum were sputter deposited. The
critical temperature of the leads is 2.5K and critical field 2T. Figure 6.17 shows an optical and SEM
image of the sample. The distance L between electrodes of the measured junction was of 330nm and
its width W = 2.7µm. Two terminal differential resistance measurements were done and carrier density
was controlled through a voltage applied to the doped silicon (gate voltage). Figure 6.18 shows the gate
voltage dependence of resistance measured at 4K. The Dirac point is at 5V showing that the sample is
electron doped. From these data the mean free path and mobility were deduced,

le =
hσ

2kF e2
µ =

σπ

ek2
F
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Figure 6.16 – AFM image of a graphene sample after exfoliation (a), after a first annealing (b) and after
a last annealing (c). Gate voltage dependence of the two point conductance changes with annealing as is
shown in (d). Taken from [36]

2.7µm

Figure 6.17 – Optical image of the sample (left) and SEM image after experiment (right). At the end of
the experiment the graphene junction ripped after a last large current annealing



6.4. TUNING THE SUPERCONDUCTING PROXIMITY EFFECT 117

-20 -10 0 10 20

600

800

1000

 

 
R

(
)

Vg(V)

T=4K

0

10

20

-1.5 -1.0 -0.5 0.0 0.5 1.0
0

20

40

60

80
 

m
fp

(n
m

)

n(1012cm-2)
 

 


(10

3cm
2/V

s
)

Figure 6.18 – Mean free path and mobility of the sample as a function of electron density (right)
calculated from the gate voltage dependence of the resistance at 4K (left)

using

kF =

√
εrε0π

ed

√
Vg − VDirac. (6.6)

Figure 6.18 shows the mean free path and mobility for the sample at 4K. Away from the Dirac point at a
density of n = 5× 1011cm−2 we find a mean free path of le = 15nm which corresponds to diffusive trans-
port. Diffusive transport is due to scattering with impurities in graphene and defects between graphene
and the SiO2 substrate. As was seen in a preceding chapter, the most likely scatterers in graphene are
short range (non charged) impurities such as ad-atoms. Graphene has in general a great spatial inhomo-
geneity in doping, which gives rise to a gate voltage width of Dirac point. In our sample this is translated
into an inhomogeneity of the Fermi energy of about 85meV , deduced using the conversion of gate vol-
tage into Fermi energy via the plane capacitor model, E = 30

√
VgmeV (see equation 6.6). Mobility was

measured around 2000cm2/V s (before annealing) which is lower than found by other groups (a mobility
of 20000cm2/V s is reported in [33] and [38] for graphene on substrate). The low mobility of our sample
can be attributed to contact resistance which lowers the apparent mean free path and mobility deduced
from the total resistance.

Figure 6.19 shows the gate voltage dependence of the two probe resistance measured at 60mK before
annealing and after three different annealings. After each annealing and before doing any measurement
we wait for some minutes while the dilution refrigerator returns low temperatures, since the temperature
could go up to 10K during annealing. The first annealing was done at 3mA during approximately 30
seconds, which corresponds to a current density J = 2× 108A/cm2 (if we take graphene thickness to be
0.36nm). The second annealing was of 6mA during 10 seconds and the last annealing of 11mA during
some seconds.

Before and after the first annealing, the Dirac point was located near 5V. This offset is attributed
to doping by charged impurities on graphene or impurities between graphene and the substrate. After a
second annealing the Dirac point was shifted by more than 20V and the resistance decreased by a factor
of 2 far from the Dirac point and by a factor of 8 with respect to the original Dirac point. After the third
annealing the resistance decreased even further and a full proximity effect was induced in the sample
with zero resistance at low current bias. This indicates that annealing not only induced a doping in the
sample and might have improved the mean free path making the sample cleaner, but the most important,
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Figure 6.19 – Gate voltage dependence of the two wire resistance of the sample before and after different
annealing steps. The last annealing induced a full proximity effect in the sample : a supercurrent ran
through the graphene. This curve was measured with a 200G magnetic field which destroys proximity
effect and thus measures the intrinsic sample resistance in this final stage. Oscillations in resistance
correspond to reproducible conductance fluctuations.

it enhanced the electrical contact to graphene. Indeed, increasing doping or mean free path alone would
not have caused the appearance of a supercurrent, it would only have increased the value of an already
existing critical current.

Let’s now discuss the effect of annealing on the proximity effect. Figure 6.20 shows the two probe
differential resistance of the sample at 60mK after the different annealing stages. It can be remarked again
that the S/graphene/S junction resistance decreases with annealing over the entire bias voltage range.
In particular the zero bias peak disappears at the last annealing step when a supercurrent is induced in
graphene (there is a zero resistance state at zero bias). A second effect of annealing is increasing the number
of anomalies attributed to multiple Andreev reflections (MAR) occurring at the graphene/superconducting
electrode interface. Different anomalies associated to MAR are observed after the 3 annealings. They can
be identified in figure 6.20 but mostly in figure 6.21.

In figure 6.21 I plot the differential resistance characteristics after the first and the second annealing.
The different curves correspond to different gate voltages showing that gate voltage has no influence on
Andreev reflections. The effect of annealing is in contrast clear. Comparing both figures it can be noticed
that a new anomaly appears after the second annealing and that high order anomalies become better
defined. Comparing the central (low bias) peak of the differential conductance after the first and the
second annealing step, it can also be seen that the amplitude and width of the peak decreases, which
explain the fact that anomalies get better defined.

Resistance dips after the first annealing appear at voltages of 167, 253 and 482 µV which is close
to 2e∆/n with n = 1, 2, 3. A fourth dip appears after the second annealing at 96µV which corresponds
to n=5. In the third annealing, anomalies are smoothed due to improved transparency of the interface
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Figure 6.20 – Differential resistance vs bias voltage for the different annealing steps. The curves were
taken at gate voltages of 0, -20, -16 and 15V respectively. In curve 3 the 40Ω resistance of the wires leading
to the sample was subtracted. Curves are not shifted vertically.

but they don’t disappear completely as would be expected for a perfectly transparent interface [39]. The
superconducting gap of our junction is then ∆ = 250µeV . This same value was found in a different sample
with a tunnel junction formed by a graphene sheet and a similar Pt/Ta/Pt trilayer. dI/dV characteristics
for this sample were shown at the beginning of this chapter (figure 6.3).

The superconducting gap of our S/graphene/S junction is smaller than the one predicted by the BCS
formula ∆BCS = 1.76 × kBTC = 379µV given the measured critical temperature TC = 2.5K. This can
be attributed to the thin Pt layer deposited between graphene and the Ta layer. It is known that the
measured TC of a Pt/Ta bilayer with thick Ta is practically the bulk TC of Ta whereas the gap can be
much smaller than the one of bulk Ta [41]. The reason is that the presence of Ta makes that in a two
probe measurement there is a resistance drop at the critical temperature of Ta regardless the presence of
Pt. On the other hand, the presence of Pt influences the electron-electron interaction which changes the
gap of the density of the states.
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6.4.2 The effect of a magnetic field on the dV/dI characteristics

Figure 6.22 shows the magnetic field dependence of the dV/dI characteristics. After the first annealing
the effect of magnetic field is only smoothing the MAR anomalies and reducing the central zero bias peak.
After the second annealing on the other hand, the magnetic field not only softens MAR peaks but also
changes the zero bias peak to a large dip near H=2.5T, the critical field of Pt/Tantalum electrodes. The
superconducting transition of graphene is shown in figure 6.23. It can be seen that the electrodes transit
at ≈ 2.5T It is interesting in figure 6.22 (bottom) that the zero bias resistance dip disappears in the
presence of a magnetic field giving rise to a peak and again to a dip back at 2T, below the transition
of the contacts at 2.5T. For higher resistive samples (top), the zero bias resistance is not a monotonous
function of the field, it goes through a minimum just below the critical field of the electrodes.

6.4.3 The effect of annealing on the transparency of electrodes and the OBTK model

Figure 6.24 shows the differential resistance normalized after the different annealings. It can be seen
again in this figure that MAR anomalies get better defined after the second annealing. They get smoothed
when a full proximity effect is induced in the sample (curve 3). This figure can be quantitatively compared
to numerical simulations made by M. Octavio et. al. in which they considered an SNS junction with a
variable transparency. The differential resistance is calculated for T = 0 as the barrier strength is changed
from Z = 0 (no barrier) to Z = 1 (half of the incident electrons at the interface are scattered with a
probability 1 of being Andreev reflected). Calculations are presented in figure 6.24. The presence of a
barrier sharpens the peaks at the gap and its subharmonics and changes their overall shape.

When comparing with the dV/dI characteristics of our junction, we remark that the effect on subgap
anomalies of decreasing barrier strength is that anomalies are smoothed. The differential resistance at the
full proximity effect may correspond to an intermediate case between the most transparent case (Z = 0)
and a weak barrier. However no calculations exist in our knowledge for a diffusive SNS junction with a
finite interface transparency or better yet including the specificities of graphene. It would be interesting
to know at which transparency supercurrent is induced in graphene and also if there is a specificity in
MAR anomalies due to the particular band structure of graphene.

In the following I discuss generally the Octavio et. al. calculations known as the OBTK theory (M.
Octavio, M. Tinkham, G. E. Blonder and T. M. Klapwijk) [39]. In OBTK theory, a Boltzmann equation
approach is used to calculate the electron populations in the normal part of an SNS junction. With
respect to a previous work [40], this theory considers Andreev reflections as well as normal reflections at
the interface with the superconductor.

Octavio et. al. model S-N interfaces at positions x = 0 and x = L as a δ-function potential of strength
V (x) = Hδ(x) as is shown in figure 6.25. All scattering events are assumed to occur at the SN interfaces
and no scattering events are assumed to occur in the normal region, in other words the normal part is
considered as ballistic. Their idea is to sum all electron currents in the normal metal, where electrons and
holes are well defined. In order to do this, they calculate the distribution function of electrons traversing
the normal part separating them in two subpopulations based on the direction of motion, f→(E, x) and
f←(E, x). They relate these distribution functions at the boundaries with the distribution functions in
the superconducting regions. Boundary conditions at the SN interfaces are :

f→(E, 0) = A(E)
[
1− f←(−E, 0)

]
+B(E)f←(E, 0) + T (E)f0(E)

f←(E,L) = A(E)
[
1− f→(−E,L)

]
+B(E)f→(E,L) + T (E)f0(E)

where A(E) is the probability of being Andreev reflected, B(E) the probability of being normal reflected
and T(E) the probability of being transmitted. The expressions for the energy dependences of A, B and
T can be written in terms of u0 and v0, the BCS parameters u, v evaluated outside the Fermi surface.
They have the general form
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Figure 6.22 – dV/dI characteristics at different magnetic fields after the different annealings. Curves are
not shifted.
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Figure 6.25 – SNS junction in OBTK model with δ functions potentials at the SN interfaces at x = 0
and x = L. V = 0

A B T

E < ∆ ∆2

E2+(∆2−E2)(1+2Z2)2
1-A 0

E > ∆
u20v

2
0

γ2
(u20−v20)2Z2(1+Z2)

γ2
(u20−v20)(1+Z2−v20)

γ2

where

γ2 =
[
u2

0 + Z2(u2
0 − v2

0)
]2

and u2
0 = 1− v2

0 =
1 +

[
(E2 −∆2)/E2

]1/2
2

In the case where there is no barrier, (Z=0)

A B T

E < ∆ 1 0 0

E > ∆
v20
u20

0 1−A

In this case, the probability of being Andreev reflected at E < ∆ is equal to 1. The probability of
being normal reflected is equal to zero. Probability of Andreev reflection and normal reflection for other
transmission coefficients Z are shown in figure 6.26. A(E) has a sharp peak at the gap that becomes too
narrow to be observable for large values of Z.

Some details of the procedure to solve f→ and f← are given in [39]. Expression for these functions
are selfconsistent equations that can be reduced to a finite set of equations and solved by writing them
in a matrix form. Figure 6.27 shows the effect on distribution functions when there is a finite scattering
probability (Z 6= 0) at T = 0. In the absence of scattering (Z=0), f→ and f← are essentially displaced
Fermi step functions except for some structure at E > ∆ for f→, and at E < −(∆ + eV ) for f← which is
related to a finite Andreev reflection above the gap. The effect of including a finite strength barrier is to
change the distribution functions from Fermi step functions to thermal-like functions with Teff ≈ eV/kB.
Distribution functions present also a sharp structure of periodicity eV.

It is then the inclusion of a barrier or a normal scattering probability that sharpens the subgap
structure in f→ and f←.

In order to calculate current going through the junction it suffices to take the difference between f→
and f← and to integrate over E,

I = AJ = 2N(0)evFA

∫ ∞
−∞

[
f→ − f←

]
dE
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B

Figure 6.26 – Plots of normal reflection coefficient (B) and Andreev reflection coefficient (A) at the N-S
interface. Z quantifies the barrier strength at the interface. Taken from [40]



126 CHAPITRE 6. SUPERCONDUCTING PROXIMITY EFFECT IN GRAPHENE

Figure 6.27 – Comparison of the distribution functions at T = 0 and eV = ∆ for no scattering (Z=0)
and finite scattering (Z=0.55)

where A is the effective cross-sectional area. Having an expression for current, dV/dI characteristics can
be calculated, as shown in figure 6.24. It can be remarked again in figure 6.24 that the effect of including
a normal scattering (Z 6= 0) is to sharpen the peaks at the gap and its subharmonics, as was observed in
the S/graphene/S junction when the different annealings were made.

6.4.4 Induced supercurrent in graphene

We now turn to the supercurrent induced in graphene after the third annealing step. As is shown
in figure 6.28, we saw a small and monotonous gate voltage dependence of the magnitude of the critical
current. This is due to the fact that after the last annealing step the Dirac point moved to a non reachable
voltage. In the color plot orange corresponds to zero resistance and red to the normal resistance, around
90Ω. Figure 6.29 shows the V(I) curve at 60mK and Vg = 15.5V . There is a zero resistance state for
currents smaller than IC = 600nA and a linear dependence for larger currents. The corresponding normal
resistance is RN = 90Ω. The switching current varies from 720nA at Vg = −64V to 480nA at Vg = 64V
and the normal resistance varies from RN = 80Ω to RN = 105Ω. The product RNIC varies between 58µV
and 50µV , which is roughly ∆/5e.

The ratio of the superconducting coherence length and the size of the sample is used to classify diffusive
SNS junctions in short or long junctions. Short junctions are those with a length L much shorter than
the superconducting coherence length

L << ξ =

√
~D
∆
,

where D is the diffusion coefficient D = vF le
2 and le the mean free path. In this regime of short junctions,

the Thouless energy is bigger than the superconducting gap (ETh >> ∆), the characteristic energy is
thus ∆ and the product RNIC is given by (as found numerically by P. Dubos [42])

RNIC ≈ 2.07∆
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Figure 6.28 – Color coded differential resistance as a function of the bias current and the gate voltage.
Orange means zero resistance.

Long junctions on the other hand, have a greater length L than the superconducting coherence length

L >> ξ =

√
~D
∆
.

The superconducting gap is bigger than Thouless energy ∆ >> ETh and then the characteristic energy
scale is the Thouless energy. In this regime eRNIC grows linearly with ETh [42]

eRNIC = 10.82ETh

The minimum between ∆ and 10ETh determines the characteristic energy of the junction and also the
critical current.

To find out the regime of our junction, we calculated the superconducting coherence length ξ and
compared it with the size L of the junction. We used the elastic mean free path le after annealing 3,
where the Dirac point is not clearly defined but is estimated to be at a gate voltage Vg = 65V . The mean
free path calculated at a gate voltage of Vg = 15.5V is le = 46nm, which yields ξ = 245nm. This of the
order of the distance between contacts, L = 330nm. The Thouless energy is then of the same order as the
superconducting gap,

ETh = ~D/L2 = 133µeV ∆ = 250µeV

and our S/graphene/S junction is in the intermediate regime between long and short junction. However,
the temperature dependence of the switching current points to a rather short junction since it follows
a Kulik-Omelyanchuck type dependence. We have compared the temperature dependence of the critical
current in the S/graphene/S junction with different theories as is shown in figure 6.30. Ambegaokar and
Baratoff have developed a complete theory for a tunnel junction in the dc regime (V=0). In this regime
Critical current is :

IC(T ) =
π

2RNe
∆(T ) tanh

∆(T )

2kBT

where ∆(T ) is the equilibrium value of the energy gap and RN is the resistance of the junction in the
normal state. ∆(T ) is almost constant al low temperatures. Here RNIC does not depend on any parameter
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Figure 6.29 – I(V) curve (left) and dV/dI(I) characteristics of the S/graphene/S junction after the third
annealing, where a full proximity effect is induced in the sample. Data was taken at 60mK.

of the barrier but only on the operating T and critical temperature through ∆(T ). The dependence of
critical current on temperature is shown in figure 6.30. For diffusive short weak links (L << ξ) which
have a length L much larger than the mean free path of electrons le, a theory has been developped by
Kulik and Omelyanchuck in 1975 which is also shown in figure 6.30. The temperature dependence of our
S/graphene/S junction seems to follow the theory of diffusive short links.

The ratio L/ξ = 1.3 leads to a theoretical RNIC product

RNIC =
1.3∆

e

which is 6.5 times bigger than what is measured, RNIC = ∆/5e. This discrepancy being too large to be
explained by only an interface resistance, can be due to dephasing by fluctuators in graphene and the
electromagnetic environment, which would cause a switching current smaller than expected.

6.4.5 Magnetic field dependence of the switching current as a proof of full proximity
effect induced in graphene

A question that arises is whether the induced supercurrent could be caused by migration of super-
conducting grains onto the graphene sheet during annealing. These grains could form a superconducting
weak link through which the supercurrent would flow. The experimental answer to this question is shown
in figure 6.31. This figure shows the switching current modulated by the magnetic field (applied perpendi-
cularly to the graphene sheet) which has the form of a Fraunhofer diffraction pattern like the one of figure
6.8. This dependence is characteristic of a wide rectangular superconductor-normal metal-supercondutor
junction. The fit using expression 6.4 is not perfect, in particular the effective sample area must be in-
creased by a factor of two to fit the experimental data. The larger effective area may be explained by
a finite penetration depth and non-local trajectories in the graphene sheet beyond the superconducting
electrodes. The penetration depth for a disordered superconductor in the presence of a perpendicular
magnetic field is given by

Λ⊥ =
Λ2

0ξ0

led

where Λ0 =
√
m/(ne2µ0) is the London penetration depth in a clean metal, ξ0 = ~vF /(π∆) is the clean

superconducting coherence length, le the mean free path in the superconductor, d the superconductor
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thickness and n the electron density. This yields a perpendicular penetration depth for our sample

Λ⊥ = 120nm,

which practically doubles the effective normal surface. In conclusion, the field periodicity of the interference
pattern excludes the formation of a superconducting tantalum link crossing our graphene sample. The
observed supercurrent comes from a full proximity effect induced in graphene.

6.5 Universal conductance fluctuations UCF in graphene with super-
conducting electrodes

Before the last annealing step which induced a supercurrent in graphene, reproducible conductance
fluctuations were observed. As was seen in a previous chapter, reproducible conductance fluctuations
are a signature of phase coherent transport in a system and they have some specificities in graphene. In
this sample with superconducting electrodes, we have also observed reproducible conductance fluctuations,
with the particularity that the variance decreases in the presence of a magnetic field (the variance increases
in the superconducting regime).

It is known that for a normal-superconducting system, the onset of superconductivity increases the
amplitude of conductance fluctuations. Beenakker and Brouwer [43] have found using random matrix
theory, that the amplitude of fluctuations δG in a NS junction with respect to fluctuations in a NN
junction when there is time reversal symmetry τ (no magnetic field) is

δGNS(B = 0) ≈ 2δGNN (B = 0).

They have also found that δGNS is insensitive to the time reversal symmetry breaking,

δGNS(B = 0) ≈ δGNS(B 6= 0)

Altland and Zirnbauer have found on the other hand [44] that when time reversal symmetry is broken,
δGNS decreases by a factor of

√
2,

δGNS(B = 0) =
√

2δGNS(B 6= 0)

and that in the absence of magnetic field δGNS is 2
√

2 times bigger than δGNN .

δGNS(B = 0) = 2
√

2δGNN (B = 0).

Figure 6.32 shows reproducible conductance fluctuations vs Vg measured after annealing step 1. At low
temperatures and zero magnetic field we have a coherent NS system that shows conductance fluctuations
with an amplitude δGH=0

NS = 2.4e2/h. We compare this value to the conductance fluctuations in the NN
junction measured after applying a magnetic field, applying a DC current or heating the junction. When
we apply a magnetic field of 4T the superconducting electrodes become normal and we have a coherent
NN system at low temperature and high field whose fluctuations have an amplitude δGHigh HNN = 0.8e2/h.
This is three times smaller than what is measured in the superconducting regime and it is close to the
prediction of Altland and Zirnbauer. A close value is also obtained when a DC current is applied to the
sample (NN system in zero field) δGH=0

NN = 0.7e2/h and at 4.2K (NN system with shorter coherence length)

δGHigh TNN = 0.7e2/h. Amplitude of fluctuations was deduced by calculating the variance of the whole gate
voltage dependence of conductance after an envelope was subtracted. Contact resistance was unknown.
A better treatment of conductance fluctuations was done in the preceding chapter where the electrodes
of the sample were normal metals. There, the amplitude of fluctuations was calculated by intervals of 3V
in gate voltage and we had better statistics.
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Figure 6.32 – Gate voltage dependence of conductance after annealing 1, in different conditions of
temperature, bias current and magnetic field. The fluctuations are reproducible. The standard deviation
deduced from the high pass filtered curve, is 2.4e2/h for the low temperature zero field curve in which
electrodes are superconducting ; 0.8e2/h for the low temperature curve above the critical field of the
superconductor(4T), 0.7e2/h for the low-temperature zero field curve with a current bias above the critical
current of the electrode. The fluctuations are 0.7e2/h for the curve at 4.2K where the electrodes are normal.
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Figure 6.33 – Graphene sheet covered with superconducting islands. Taken from [47]

Reproducible conductance fluctuations in graphene with superconducting contacts have also been
observed by Trbovic et. al. [45]. They used a few graphene layer nanoribbons connected to Ti/Al leads.
They observed an enhancement of the conductance variance of the sample in the superconducting state
with respect to the normal state by a factor between 1.4 and 1.8. They explained the difference with theory
by a finite phase-breaking length lφ < L at the temperature at which the sample is superconducting.

6.6 Superconducting proximity effect induced in graphene by super-
conducting islands

An other way of inducing superconductivity in graphene is through superconducting islands. Graphene
can become superconducting by proximity effect by printing small superconducting islands that cover a
tiny fraction of the graphene area. Feigel’man et. al. [47] have shown that even a small area of graphene
covered by superconducting islands with a good electric contact to graphene, can lead to a macroscopically
superconducting state of graphene with TC in the Kelvin range (for a certain average distance between
the islands).

6.6.1 Theoretical predictions for proximity effect

Feigel’man et. al. considered a system of superconducting islands distributed uniformly in the graphene
sheet as shown in figure 6.33. The radius of the islands a is smaller than the distance b between the islands
and the mean free path is smaller than or of the order of the radius of the islands l ≤ a. They assumed
graphene Fermi energy bigger than the island superconductive gap (EF >> ∆0).

They say that graphene can become superconducting by proximity effect with superconducting islands
because of the following reasons :

1. Graphene has a high diffusion constant D ≥ 102cm2/s

2. Graphene has a very low electron density (in comparison to metals)

Thus it allows to combine moderate values of dimensionless conductance

~
e2R2

≥ 3

(where R2 is the square resistance of graphene) with a high Thouless energy

ETh =
~D
b2

(6.7)

In fact, very large conductances don’t favor the proximity effect. They can induce a suppression of super-
conductivity in the islands due the inverse proximity effect. In graphene, inverse proximity effect can be
neglected since

GGraphδ ≤ ∆0
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where GGraph is the conductance of graphene including interface conductance and δ is the level spacing
of the islands. For small size islands, the level spacing can be large (δ ≈ 1/L2) but this is compensated
by moderate conductance (if contact resistance is small).

Graphene is treated in Feilgel’man’s work as a normal diffusive 2D metal using Usadel equations.
Their calculations show that it goes through a Berezinsky-Kosterlitz-Thouless transition in a temperature
range of Tc = 1 − 3K (for graphene with a diffusion coefficient D = 500cm2/s and distance between
superconducting islands b = 0.5µm). Josephson coupling is short ranged at T ≈ TC . At T > TC phases
in the different islands are decorrelated and at T < TC phases become identical. At T << TC Josephson
coupling becomes long-range. In this regime, solution of Usadel equations leads to the formation of spectral
gap Eg similar to the minigap in the SNS junctions. For an ideal interface between the superconductor
and graphene, the value of this spectral gap is

Eg ≈
2.65ETh

ln
(
b/4a

) ,
where ETh is defined in equation 6.7. Like the minigap in SNS junctions, the spectral gap in graphene
depends on the Thouless energy, that in this case, is determined by distance between nanoparticles. The
predicted existence of a spectral gap is surprising since only a small fraction of graphene is in contact
with the superconducting islands, it is actually strongly related to the structure of the islands assumed.
Any irregularity on the position of the islands will give rise to a smearing of the gap. The gap will also
get smeared by thermal fluctuations of the island’s phases φi and by a finite thermal coherence length
LT . The gap is suppressed if the contact resistance with graphene is large.

Even in the presence of gap smearing, it is predicted that a strong suppression of the local density of
states of graphene at E < Eg should be observed by low temperature scanning tunneling microscopy. The
presence of this spectral gap is signature of collective proximity effect. The corresponding spatial scale is

ξg =

√
~D
Eg
≈ b
√

ln
(
b/a
)

which plays the role of the low temperature coherence length in a superconductor in the dirty limit.

A low magnetic field at low temperatures creates vortices with a core size ξg ≥ b pinned by the
underlying array structure and with a local density of states gapless in the core regions. In this situation
a critical current is still expected. When a flux quantum crosses an area 2πξ2

g (H = φ0/(2πξ
2
g)) the vortex

cores overlap and the proximity gap is completely destroyed.

6.6.2 Superconducting islands on graphene for the study of superconducting transi-
tion with variable carrier concentration

An experimental work [48] has been published in which large superconducting islands are printed in
graphene with small distances between them. The goal of this experiment is to address the question of
superconducting transition analyzing separately the effects of disorder and carrier density. Kessler et.
al. [48] deposited a non-percolating network of superconducting islands on graphene in order to have an
homogeneous dirty superconductor over a tunable substrate. Here, the superconducting transition can
be studied at fixed disorder and variable carrier concentration via a field effect on graphene. Figure 6.34
shows the sample measured.

For sample fabrication, the authors exploited the poor wettability of graphite. They evaporated Sn
on pristine graphene at room temperature. Sn with its low melting point formed self-assembled islands
with 80 ± 5 nm diameter and 25 ± 10 nm gaps between them. Even when 40% of the graphene surface
is covered with Sn, the electronic properties of graphene remained, like mobility µ > 1000cm2/(V s) and
bipolar transport. The value of mobility was however reduced by a factor five, the Dirac point was shifted
and there appeareared an asymetry in electron-hole transport, as is shown in figure 6.34.



134 CHAPITRE 6. SUPERCONDUCTING PROXIMITY EFFECT IN GRAPHENE

Figure 6.34 – Top : Gate voltage dependence of the differential conductance before and after the deposi-
tion of Sn in the work of Kessler et. al.. Dirac point gets shifted. Bottom : Scanning electron image of the
sample (scale bar=100nm). Inset : optical image showing the four probe configuration (scale bar=10µm).
Taken from [48]
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Figure 6.35 – Left : Graphene resistance versus temperature at different gate voltages (curves are similar
for negative gate voltages). Dirac point is at Vg = 40V . The arrow indicates the superconducting transition
of Sn islands. Right : Current voltage characteristics at 100mK and zero magnetic field for different gate
voltages corresponding to hole transport. The inset represents similar curves for electron transport. Taken
from [48]

Superconducting islands not only changed the normal transport properties of graphene, but mainly
induced superconducting correlations in graphene. Figure 6.35 shows the temperature dependence of
resistance for different gate voltages. A first partial drop occurred at ≈ 3.5K that didn’t change with
gate voltage. This correspond to the superconducting transition of Sn. At lower temperatures full range
superconducting correlations appeared and the sample became superconducting. The critical temperature
of the sample had a strong dependence on gate voltage, as is shown in figure 6.35. It is qualitatively similar
to the one observed in isolated graphene junctions of micron size, the difference being that supercurrent
is maintained over distances of tens of microns, showing a full phase coherence in the system.

6.6.3 Superconducting islands on graphene that induce a tunable metal insulator
transition

We have also studied samples of graphene with superconducting islands. Contrary to the experiment
of Kessler et al., the distance between particles (≈ 50nm) was much larger than the size of the particles
(5nm). Samples were fabricated by Alik Kasumov by sputtering a thin layer of In (less than 1nm during
≈ 2s) over graphene with the substrate previously heated at 300̊ C. (The substrate was kept at this tempe-
rature during the deposition). Heating the substrate at 300̊ C favors the formation of nanoparticles since
melting temperature of nanoparticles is 150̊ C. By choosing the temperature of the substrate it is actually
possible to control the size of nanoparticles. The higher the temperature, the bigger the particles and
the larger the distance between them. Figure 6.36 shows a preliminary sample in which In nanoparticles
are deposited over a grid for transmission electron microscopy (TEM) covered with a thin amorphous
carbone membrane. The crystallographic planes of the particles can be distinguished in the right panel of
figure 6.36. Figure 6.37 shows a microscope image of the graphene sample before and after deposition of
In nanoparticles. Bigger nanoparticles are formed on graphene than on the substrate. We measured gate
voltage dependence of the two probe resistance before and after the deposition of nanoparticles (Figure
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Figure 6.36 – Indium nanoparticles over a thin amorphous carbon membrane. Right : zoom on one
nanoparticle.

10µm10µm 200nm

Figure 6.37 – Left : SEM image of the sample before the deposition of In nanoparticles. Right : Zoom
over a region after deposition of In nanoparticles.
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Figure 6.38 – Normalized two probe resistance versus gate voltage of the sample before and after depo-
sition of In nanoparticles.

6.38). Resistance of the sample increased dramatically after deposition of the nanoparticles but was lowe-
red back to 12kΩ (three times de resistance before the deposition) after an annealing for 2 hours à 700̊ C.
Dirac point moved to a gate voltage that was not reachable anymore with the back gate.

As in the work of Kessler et al. the Dirac point moved after deposition of nanoparticles. On the other
hand, when going to low temperatures, contrary to what Kessler et al. found, graphene became insulating
as is shown in figure 6.39 2. This figure can be contrasted with figure 6.35. In our case it is conductance
and not resistance that dropped to zero when temperature was lowered. The explanation of the different
behavior we find might be related to disorder in our sample. Sputtering a metallic layer over all the
graphene surface is certainly more aggressive with graphene than the deposition by evaporation, used by
Kessler et al.. Disorder induced in graphene during the deposition process might be responsible for the
insulating behavior we observed. In Kessler’s et al. sample the average density of superconducting islands
is much larger this might have helped the appearance of a supercurrent crossing the sample, as is seen in
figure 6.35.

It is known that disorder modifies the electronic wavefunctions of a system giving rise to an insulating
state. Anderson showed that in the presence of a random potential, if disorder is important enough
electronic wavefunctions tend to localize. If disorder is weak, the Fermi wavelength is still small with
respect to the mean free path (kF le >> 1) and the conductivity can still be expressed in terms of the
Drude formula,

σ =
ne2τe
m

.

There are however quantum corrections to conductivity due to interferences between wavepackets. As
was mentioned at the beginning of the previous chapter, conductance can be expressed in terms of a
distribution probability of electrons initially at r1 to reach r2 (equation 5.1). This distribution probability
has constructive interference terms associated to time-reversed paths that enhance the return probability
(probability of being at O in figure 5.3) with respect to its classical value. This reduces the probability
of reaching the point r2 and decreases average conductivity. As was mentioned in the preceding chapter,

2. Data shown in figures 6.39 and 6.41 was taken and analyzed by Jordan Andieux during his internship in the group.
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Figure 6.39 – Temperature dependence of the graphene conductance. At low temperatures graphene
becomes insulating.

this is called the weak localization correction to conductivity.

In this situation of weak disorder, even if wave packets diffuse in a random way, they can still be
described as plane waves delocalized all over the system. However, when kF le becomes of the order of 1
and at sufficiently low temperatures, for dimensions d < 3, the nature of diffusion greatly enhance the
return probability and electron’s trajectories have a tendency to localize in closed trajectories, entering
into a regime of strong localization. In this regime the system is in an insulating state. The amplitude of
wavefunctions decreases exponentially over a distance ξloc called the localization length.

|ψ2(r)| ≈ exp
(
− |r − r0|

ξloc

)
The localization length for d = 2 depends exponentially on disorder. It has the form

ξd=2
loc = leexp

(π
2
kF le

)
In the insulating regime, conductance can be thermally activated. When temperature is such that Lφ ≈

ξloc, transport is given by thermally activated jumps between neighbor localized volumes. Conductance
is then given by

G(T ) = G0e
−EAct/KBT

where EAct is the transport activation energy.

The behavior of conductance versus temperature we have measured (figure 6.39) can be fitted well by
such an activation energy law, as is shown in figure 6.40. Activation energy turns out to be EAct = 0.5meV
which coincides with the superconducting gap of Indium (0.54meV ). In the presence of a magnetic field
activation energy changes slightly, as can be seen in figure 6.40.

Such a behavior has been observed in thin films of amorphous indium oxide [85] where a superconducting-
insulating transition is driven by the application of a perpendicular magnetic field. In the insulating phase,
the characteristic temperature of activated conduction is close to the superconducting transition tempe-
rature and changes when a magnetic field is applied.

However, in our samples the thermally activated behavior does not seem to be clearly related to the
In particles becoming superconducting since it is still observed for temperatures larger than the critical
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Figure 6.40 – Left : Temperature dependence of conductance in log scale. The sample follows a thermal
activation behavior with an activation energy of 0.5meV . Right : The activation energy decreases slightly
with increasing magnetic field.

temperature of Indium T > 3.4K (T−1 < 0.3). The thermally activated behavior puts in doubt the
relationship between the insulating phase and superconductivity in our samples.

Activation energy can also be compared to the spectral gap Eg predicted by Feigel’man et. al,

Eg ≈
2.65

ln(b/4a)

~D
b2
.

If we consider that graphene has a diffusion coefficient D ≈ 10−3m2/s and that In particles are distant
in average of b = 50nm, we have Eg = 0.8meV . However, the spectral gap Eg only has a sense in a
superconducting sample.

We can also identify an insulating gap appearing in the dI/dV characteristics which decreases in the
presence of a magnetic field perpendicular to the sample, as is shown in figure 6.41. This gap might be
related to the superconducting gap of the nanoparticles but it is much larger. The critical magnetic field
of the sample may correspond to a flux quantum going through one particle. Taking into account the
dimensions of the nanoparticles, it should be of the order of 25T which explains why an applied magnetic
field of 5T closes partially the gap.

BC =
φ0

Area
=

2.067× 10−15

πR2
= 25T

Although, before such a high field, the superconductivity of the nanoparticles will should be destroyed at
B > 2∆/µB = 15T with µB = e~/2me, according to Clogston criterium.

Figure 6.42 shows how increasing temperature closes the insulating gap. For this sample unfortunately,
gate voltage was not efficient at low temperatures. On a second graphene sample on the other hand, that
also presented an insulating behavior, we observed a gate voltage dependence of the insulating gap. Figure
6.43 shows the effect of depositing superconducting particles on the gate voltage dependence of resistance.
A temperature annealing of 700̊ C was also performed. The two probe resistance increased by a factor of
≈ 60 with respect to its value before the deposition of nanoparticles, much more than in the first sample.
The gate voltage dependence of the differential conductance for this second sample can be observed in
figure 6.45. For negative gate voltages, the gap becomes smaller, like if gate voltage had a similar effect
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Figure 6.41 – Left : Differential conductance of graphene with In nanoparticles at different magnetic
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Figure 6.43 – Normalized two probe resistance versus gate voltage of the sample before and after depo-
sition of In nanoparticles. Inset : optical image of the graphene sample before In nanoparticles.

than the one of magnetic field or temperature. The dependence of the insulating gap with the gate voltage
is represented in figure 6.44. As is shown in figure 6.46, magnetic field as in the first sample, tends to
close the superconducting gap. Increasing temperature also smooths the superconducting gap.

These measurements open the question of whether it is possible to induce an insulating-metallic
transition in graphene by changing charge carriers. Graphene being bidimensional, it is susceptible to
interesting quantum phase transitions. Two dimensions is the lower critical dimension for both localization
and superconductivity. Would it be possible in graphene to transit from the behavior we observed in our
samples to the one observed by Kessler et al. ?. Is it possible to induce in graphene through gate voltage,
better than a insulating-metallic transition, an insulating-superconducting transition ?.

Fisher [50] argued that a superconducting thin film, in the presence of a magnetic field should go
through a transition into an insulating state at zero temperature. When a magnetic field is applied
on a superconducting film, a formation of vortices arises which are bosonic particles. At the critical
magnetic field, vortices (that were paired in the superconducting state) delocalize and go through a
Bose condensation. This condensation requires that the electrons pairs be localized, just as in in the
superconducting state Cooper pair condensation needs localized vortices. Near the transition there is
then a competition between condensation of Cooper pairs (superconductivity) and condensation of vortices
(localization). Fisher et al. [51] demonstrated that at the superconducting-insulating transition, the system
behaves like a normal metal with a finite, non zero resistance at T=0. They argued that the value of
resistance per square R2 is universal and depends only on the universality class of the transition.

Superconducting-insulating transition (SIT) has been largely studied in thin superconducting films
[53], [54], [55], [56]. Experimentally this transition is induced by decreasing the film thickness (changing
disorder), or by a magnetic field. Figure 6.47 show data [49] from TiN films in which the superconducting-
insulating transition is mediated by disorder. Increasing disorder in different films makes samples switch
abruptly from a superconducting behavior to a insulating one. It is seen that around 1K films have almost
the same resistance R2. It is only at low temperatures that films choose between a superconducting or
isolating ground state.

It would be very useful in our samples to be able to determine kF le which tell us know if we are in
an insulating regime. This could be extracted using a four probe geometry or from magnetoresistance
measurements, as was done at the beginning of this chapter. Unfortunately such measurements have not
been done for the moment.



142 CHAPITRE 6. SUPERCONDUCTING PROXIMITY EFFECT IN GRAPHENE

- 6 0 - 4 0 - 2 0 0 2 0 4 0 6 0
5 0

6 0

7 0

8 0

9 0  

 

V(m
V)

V g ( V )

Figure 6.44 – Dependence of the insulating gap on gate voltage for the second sample.

6.7 Conclusions

A question that arises for our samples is whether such a thermally activated behavior with a characte-
ristic temperature of ∼ 3.4K would be present if particles were not superconducting. If superconductivity
does play a role, we think that a superconducting-insulating transition might be observable in graphene
in less disordered samples than those measured until now. This could be done by annealing the sample
at higher temperatures without damaging the In nanoparticles or changing the deposition of particles to
a less energetic technique. In this way it should be possible to observe percolation of superconductivity
when Lt ≈ b

Given the former theoretical and experimental works on 2D superconducting samples, we think that
graphene covered with superconducting islands might be a system where superconducting-insulating tran-
sition could be tuned not by changing disorder or magnetic field but by adjusting resistance R2 through
the gate voltage. This would make the sample switch from a superconducting state to an insulating one
by changing gate voltage.
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Figure 6.47 – Temperature dependence of resistance for samples with different thickness at zero magnetic
field. Taken from [49]
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[78] J. Nöel Fuchs, Mark O. Goerbig, M. Potemski, Images de la physique (2007).

[79] A. Geim and K. S. Novoselov, Nature materials 6, 183 (2007).

[80] N. D. Mermin, Phys. Rev. 176, 250 (1968).

[81] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva
and A. A. Firsov, Science 306, 666 (2004).

[82] F. Molitor, D. Graf, C. Stampfer, T. Ihn and K. Ensslin, Adv. in Solid State Phys. 47, 171 (2008).

[83] F. V. Tikhonenko, A. A. Kozikov, A. K. Savchenko, and R. V. Gorbachev, Phys. Rev. Lett 103,
226801 (2009).

[84] R. V. Gorbachev, F. V. Tikhonenko, A. S. Mayorov, D.W. Horsell, and A. K. Savchenko, Phys. Rev.
Lett. 98, 176805 (2007).

[85] G. Sambandamrthy, L. W. Engel, A. Johansson and D. Shaar, Phys. Rev. Lett. 92, 107005 (2004).

[86] M. Monteverde, C. Ojeda-Aristizabal, R. Weil, K. Bennaceur, M. Ferrier, S. Guéron, C. Glattli, H.
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