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ABSTRACT: Whispering-gallery mode resonators host multiple
trapped narrow-band circulating optical resonances that find
applications in quantum electrodynamics, optomechanics, and
sensing. However, the spherical symmetry and low field leakage of
dielectric microspheres make it difficult to probe their high-quality
optical modes using far-field radiation. Even so, local field
enhancement from metallic nanoparticles (MNPs) coupled to
the resonators can interface the optical far field and the bounded
cavity modes. In this work, we study the interaction between
whispering-gallery modes and MNP surface plasmons with
nanometric spatial resolution by using electron-beam spectroscopy
with a scanning transmission electron microscope. We show that
gallery modes are induced over a selective spectral range of the
nanoparticle plasmons, and additionally, their polarization can be controlled by the induced dipole moment of the MNP. Our study
demonstrates a viable mechanism to effectively excite high-quality-factor whispering-gallery modes and holds potential for
applications in optical sensing and light manipulation.
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The past few years have witnessed unprecedented advances
in photonic technologies. In particular, plasmonics has

attained the precise engineering of absorption and scattering
properties of metallic nanoparticles due to improvements in
synthesis methods.1−4 At the same time, fabrication techniques
have allowed the widespread use of whispering-gallery-mode
resonators (WGMRs), which have attracted strong interest in
the context of quantum electrodynamics,5,6 optomechanics,7,8

and sensing applications.9,10 The tuning capability of both
technologies makes the study of coupled systems particularly
interesting, as we discuss throughout this work.
A physical description of WGMs was first proposed by Lord

Rayleigh using acoustic waves circulating the dome of St. Paul’s
Cathedral,11 while the electromagnetic-wave analogue can be
found in circular or spherical microstructures. Resonances are
characterized by their transverse electric (TE) or magnetic
(TM) polarization and a set of angular, radial, and azimuthal
mode numbers (l, q, and m). In addition, WGMRs made from
materials with low intrinsic loss, such as silica, can sustain
modes that have exceptionally high quality factors5 (Q factors).
Due to its high Q factor, coupling light to a WGMR is a

challenging task. Efficient methods almost always rely on
evanescent fields using gratings, prisms, or tapered fibers.12−15

In particular, fiber tapering can reach coupling efficiencies as
high as 99% but requires active positioning to maintain this

level of performance over long time periods. Free-space light is
an alternative to evanescent coupling, but it has only
encountered partial success, with spheres16,17 and asymmetric
cavities18,19 having high radiative loss due to the bounded
nature of the gallery modes.
A practical solution to the problem is to couple an

intermediate (e.g., plasmonic) nanoparticle to the gallery
modes and to employ it as an evanescent light coupler into the
WGM microresonator.20−23 This approach has been success-
fully used to detect and characterize the nanoparticle using
mode energy shifting,24−26 splitting,27,28 or broadening29,30 of
the unperturbed resonances. Single-metallic-nanoparticle and
gallery-mode coupling using far-field light has been studied for
applications in photocatalysis,31 as well as for engineering
ultranarrow plasmonic resonances.32,33 Selective coupling into
TE and TM modes depending on the incident free-space light
polarization has also been observed,34 finding interesting
applications in sensing thanks to the clearer mode
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identification enabled by this method.10 However, a sufficient
degree of spatial resolution to study the induced near electric
field is still lacking in all of the aforementioned studies.
An alternative to study nanoparticles with high spatial

resolution is to use a scanning transmission electron micro-
scope (STEM). Electron energy-loss spectroscopy (EELS) and
cathodoluminescence (CL) spectroscopy are techniques that
can be performed inside the STEM and can combine the sub-
nanometer probe size with high spectral resolution (<30 meV)
when monochromatic electron sources are used. EELS and CL
have been extensively explored to study small (radius <150
nm) particles,35−37 including the observation of low-order
optical modes in SiO2 spheres by Hyun et al.38 Large spheres
(radius >1.5 μm) have been studied with electron beams using
photon-induced near-field electron microscopy,39 in which a
few gallery modes have been observed due to the interaction of
an externally applied optical field with the free electrons.40

More recently, Müller et al. have measured broad-band light
emission from high-Q WGMRs using fast electrons,41 but
without the complementary information obtained from EELS.
Most of these examples, however, could not resolve a large
number of modes. In addition, the bare resonators did not
offer much to be spatially explored due to their spherical
symmetry.
In this work, we study the coupling of an electron beam to

large SiO2 spheres, in which the narrow-band resonances
observed by EELS and CL are attributed to circulating gallery
modes in the plane containing the electron trajectory. We
explore the coupling of a single silver nanocube with the
WGMR through the modulation of the low-Q resonances of
the nanocube surface plasmons by the higher-Q gallery modes,

as well as by a dependence of the gallery-mode polarization on
the orientation of the electron-induced nanoparticle dipole
moment, which can be achieved by changing the electron
probe position.42,43 Figure 1 presents a scheme of the
experimental setup, as well as illustrations of the influence of
the electron beam position on the excitation of modes with
different polarizations.
The analytical solution of the energy loss probability of a fast

electron upon interaction with a spherical dielectric body can
be written as44−46
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where Km is a modified Bessel function of order m, b is the
electron impact parameter with respect to the sphere center, tl

M

and tl
E are the Mie scattering coefficients,47−49 which depend

exclusively on the sphere radius and its dielectric function, and
Clm
M and Clm

E are coupling coefficients that depend on the ratio
of electron to light velocities, v/c. The photon emission
probability can be written similarly by making the substitution
Im{tl

E,M} → |tl
E,M|2.44 These simple results show that EELS

(CL) is a well-fitted tool to study extinction (scattering)
spectroscopy on the nanometer scale, as it is the case in smaller
systems.50

We have used nonfunctionalized SiO2 spheres from
BangsLabs Inc.51 ranging from 1.50 to 2.00 μm in radius for
the experiments. We used a modified Nion Hermes 200
instrument fitted with an Attolight Mönch CL system. The

Figure 1. Configuration used to study the coupling between a MNP and a WGMR. (a) Scheme of an electron microscope containing an electron
source, an electron monochromator, a CL mirror, the sample, and an electron spectrometer. (b) Scheme of an electron beam and the excited TM
mode (dashed line) in a bare dielectric sphere. (c) Through the addition of a metallic nanocube, the polarization of the excited WGM can be
controlled by the electron-probe position.
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monochromatization scheme of the Hermes instrument allows
us to reach down to ∼5 meV spectral resolution and access
energies >40 meV at a nominal incident acceleration of 60 kV.
This has enabled multiple works in the infrared regime,
especially on phonons52−54 and plasmons.55,56 However, at
higher acceleration energies and with a focus on the relatively
high energy losses and broader energy scales as explored in this
work, a spectral resolution of 20−30 meV is more appropriate.
Experimental results were interpreted by energy-loss simu-
lations done by using a 3D finite-difference time-domain
(FDTD) method available in Ansys Lumerical57 and based on
the work from Cao et al.58 Mie scattering calculations were
used to estimate the sphere radius.49,59 The dispersion values
for the SiO2 response were taken from Malitson’s work.60

Figure 2 shows the combined results of EELS and CL
measurements using acceleration voltages of 200 and 100 kV
for one bare sphere suspended on a carbon membrane of ∼20
nm thickness. More than 80 resonances were observed in the
broad-band excitation using 200 keV electrons in EELS, while

no energy loss was observed for 100 keV due to the reduced
coupling for slower electrons. In both the experimental results
and the FDTD simulations, TE polarization is poorly excited
by the fast electron, also as a consequence of eq 1 due to the
smaller coupling strengths of TE in comparison with TM for
these electron energies.
Each resonance in EELS and CL was fitted and the obtained

center subtracted from the adjacent mode to form a spectral
distance curve, which was subsequently compared with the
theoretical free spectral range (FSR).61,62 These values were
used for modes from 2.0 to 3.0 eV to extract the effective index
of refraction. The index was calculated to be 1.398 at 2.0 eV
and 1.409 at 3.0 eV, which are values that agree within ∼95%
accuracy with reference values.60 Beyond 3.0 eV, modes have
Q factors exceeding 105 from Mie theory, which would be
easily washed out by losses and finite energy resolution of our
experimental setup. This is especially important for the far-UV
resonances observed in EELS, as multiple sets of radial orders
combined with the limited spectral resolution of the electron

Figure 2. Emergence of optical modes in a SiO2 sphere of 1.595 μm radius. (a) EELS and CL spectra measured by using 200 keV, compared to
FDTD simulations. The inset shows measurements at 100 keV, lacking any visible resonances. (b) Enlarged area around the highlighted gray
rectangle in (a). (c) Measured CL and simulated FDTD Q factors, plotted along with the spectral distance from EELS, CL, and FDTD. The FDTD
Q factor is divided by a factor of 5 for readability.
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beam undermine mode order identification and the estimation
of the index of refraction (see the Supporting Information for
further details). The Q factors from FDTD follow an
exponential-like profile, as radiation leakage is the only source
of loss in the simulation. The inflection point near 2.8 eV in
the experimental Q factor from CL can be attributed to a

combination of experimentally induced losses, such as the
effect of the carbon membrane and surface inhomogene-
ities61,63 as well as the expected quality factor reduction from
the increased radial order.
To study the coupling of nanoparticles with WGMRs, we

have drop-casted silver nanocubes of ∼100−120 nm in side

Figure 3. Characterization of MNP-WGMR coupling. (a) Experimental electron energy-loss spectra of a silver nanocube of ∼105 nm side length
placed on a silica sphere for four different probe positions, as indicated by the inset scheme. (b) FDTD simulated electron energy-loss spectra of a
100 nm silver nanocube on a SiO2 planar substrate for similar probe positions. (c) Spectral maps obtained by EELS for all identified modes and,
superimposed, the FDTD-simulated absolute value of the electric field.

Figure 4. Polarization dependence of the NMP-WGMR coupling. (a, b) Polarization dependence on the probe position as observed in in the EELS
(a) and CL (b) signals associated with the dipolar mode. TM and TE modes are simultaneously observed in CL for the lateral probe position, while
they are unobservable in EELS due to the limited spectral resolution of the electron source. (c) Spectral distance and quality factors for the
resonances found with the lateral probe position. The uncertainty in the spectral distance is <1 meV for all data points.
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length, synthesized by seed-mediated growth64,65 in the sample
grid containing the SiO2 spheres. To mitigate the direct
coupling of the electron beam with the WGMR, the electron
acceleration is kept at 100 keV, where the coupling terms for
angular modes l ≈ 20 are reduced by 2 orders of magnitude
(see the Supporting Information). In theory, bare nanocubes
are known to support an infinite number of optical modes,66,67

which are conventionally divided into corner (C), edge (E),
and face (F) modes.68−71 The presence of the SiO2 sphere, as a
substrate, induces mode hybridization for each of the C, E, and
F modes, leading to the so-called proximal and distal splitting
in reference to the induced fields concentrated close or
opposite to the substrate,72,73 respectively. Figure 3 shows the
most notable of these modes identified simultaneously by
EELS and FDTD simulations, done by placing a 100 nm Ag
nanocube on a 500 nm thick SiO2 plane substrate in order to
observe the cube−substrate hybridization. Weak coupling
between the gallery modes circulating in the sphere and the
cube surface plasmons is observed in the spectral range of the
dipolar mode (Dip) and, to a lesser extent, in the first observed
distal corner (DC1) resonance, as shown in Figure 3a.
Loss spectra were studied with the electron probe positioned

at the cube top (opposite edge from the substrate), side
(lateral edge), distal corner (opposite corner from substrate),
and proximal corner (closer corner to substrate) positions,
which contain all possible symmetries of the problem. No
gallery modes were observed in the proximal corner mode PC2,

the second distal corner DC2, the proximal and distal edge
modes (PE and DE, respectively), and the distal face mode DF,
even though similar bare resonators exhibited detectable
modes of up to 7 eV under 200 keV electron excitation.
This behavior can be attributed to the near-zero net dipole
moment of these higher-order modes, and thus, the resulting
electric field is not enough to be observed in the EELS
spectrum. Figure 3c shows filtered spectral maps of the cube
modes, which match the already-known tomographic recon-
structions of this system73 and were also observed in the
FDTD simulations. The absolute value of the electric field
obtained from FDTD for each of the cube modes is shown in
the respective experimental cube map. Finally, we have
performed FDTD simulations of an entire spectral image
that confirm the observed spatial and spectral features of the
nanocube (see the Supporting Information).
Due to the much more complex distribution of the local

electric field associated with these higher-order modes, we have
focused our analysis on the dipolar mode (Dip) of the cube,
which is characterized by dipole moments along the three main
symmetry directions. Within the dipolar picture, we suggest
that different probe positions induce different gallery-mode
polarizations that translate into net dipolar moment directions.
As TE modes have no radial electric fields (r·E = 0), the top
probe position primarily excites TM modes. If the probe is
placed laterally with respect to the cube, the resulting electric
field is mostly tangential to the sphere surface and can thus

Figure 5. Analytical description of free-electron interaction with a MNP−WGMR hybrid system. (a) Electric field contributions to the self-
consistent dipole model (see main text), where the MNP is treated as a dipolar scatterer. (b) Calculated electromagnetic Green tensor components
for the self-induced field produced by the particle dipole on itself due to the presence of the dielectric sphere, in comparison with the real part of
the inverse of the MNP polarizability. (c) Model calculation of the EELS probability corresponding to the nanocube alone and the nanocube placed
near the sphere for the electron beam position shown in the inset.
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excite both TE and TM modes.34,74 The experimental results
from EELS show resonances that are equally spaced by ∼71
meV for each top and lateral probe position, but shifted ∼22
meV between each other, as shown in Figure 4. This value is
smaller than the fwhm derived from the EELS spectra and
therefore limits the resolution of possible neighboring TE and
TM resonances. CL offers a simple solution to further explore
the problem, thanks to its superior spectral resolution.
The employed CL system is angle-selective and can only

detect gallery modes that circulate close to the plane
containing the electron trajectory due to the mirror position
relative to the sample and the electron beam direction.
Experimental CL results are shown in Figure 4b. For the top
probe position, which induces a strong radial electric field, TM
polarization is more clearly resolved, while for a lateral probe,
both sets of TM and TE resonances can be observed. The
measured FSR is ∼69 meV, and the TE-TM spectral distance
can be directly determined with the lateral probe spectrum as
∼35 meV.
We have fitted the resonances measured in the lateral probe

position and divided them into two different sets. Consecutive
modes were subtracted to obtain a spectral distance curve, and
the standard deviation was used to estimate Q factors. We have
also included error bars for the Q factors due to the non-
negligible fitting uncertainties. The spectral distance curve
shows no notable difference between polarizations, as expected
from its definition. The Q factor for TE modes has a minimum
value centered at the cube dipole resonance, which is expected
because cube-induced losses are then maximal. For the TM
modes, we observed a steady Q factor decrease down to the
lowest energy resonance at ∼1.9 eV, but not a clear minimum.
Unfortunately, the low emitted light intensity and the
impossibility of easily changing the electron acceleration
preclude further exploration of the coupled system.
It is worth mentioning that CL results outside the dipolar

energy range were also obtained. While induced gallery modes
were not observed in EELS for DC2 (Figure 3a), CL clearly
displays a coupling component (Figure S5 in the Supporting
Information). This observation reinforces the argument that
the coupling strength is dependent on the net dipole moment.
Since CL measures the radiative component of the coupled
plasmon−WGM mode, induced gallery modes can be
observed. In addition, EELS is a combination of radiative
and nonradiative losses and, because the nonradiative
contribution only contains plasmonic losses and dominates
over the radiative component, gallery modes are difficult to
resolve in the EELS spectra.
To obtain further insight into the physics of the nanocube−

sphere system, we have developed a semianalytical model that
captures the main elements of the experiment. In this model,
the MNP is described as a dipolar scatterer of polarizability
α(ω) whose dielectric environment is modified by the
presence of the dielectric sphere. The latter enters through a
3 × 3 Green tensor that transforms the effective particle
polarizability into α α= −−1/( )eff 1 , and whose compo-
nents are obtained from the electric field induced at the
position of a unit dipole placed at the nanocube center. We
calculate α(ω) from a finite-difference method (see Figure S6
in the Supporting Information) and using the boundary-
element method46 in the presence of the sphere.
These elements are represented in Figure 5b, where Re{α−1}

is found to change sign around 2.5 eV, indicating the

emergence of a prominent particle plasmon, whereas
displays sharp oscillations revealing the effect of coupling to
the Mie modes of the sphere. For comparison, we show for a
planar silica surface, which shows a featureless profile. From
these considerations, we understand that we are in the weak-
coupling regime because the lifetime of the MNP dipole is
much smaller than that of the whispering-gallery modes, so
that the imaginary part in the denominator of αeff remains
relatively large and is dominated by the nanocube component.
Then, the optical response of the MNP−sphere hybrid system
is enhanced at the points in which the real part of the
denominator is canceled, as indicated by the crossings between
Re{α−1} and { }Re in Figure 5b. The effective dipole induced
on the particle receives contributions associated with different
scattering paths, as schematically shown in Figure 5a. Namely,
it is contributed by the direct field produced by the electron
(EEB

dir), as well as by the scattering of this field at the sphere
(EEB

refl) and the scattering of the dipole field at the sphere acting
back on the dipole (Edip

refl); these contributions are all captured
in αeff, from which a scattering series can directly be
constructed by a Taylor expansion in powers of α .
To calculate EELS in this analytical model, we use the

multiple elastic scattering of multipole expansions (MESME)
method75 with the sphere and the MNP acting as scattering
centers. In particular, the sphere is described by multipoles up
to an order of >30 and the MNP through the electric dipolar
components of the scattering matrix. This method captures all
scattering paths schematically represented in Figure 5a. The
results presented in Figure 5c confirm the analysis based on
αeff: the EELS probability with the MNP alone exhibits a
prominent plasmon, but it is modulated through coupling to
Mie resonances of the sphere in a way similar to that observed
in experiment. Note that the model successfully describes the
sphere and MNP coupling within the dipolar picture, but it
does not account for higher-order plasmon modes. In this
sense, although Figure 5 shows gallery modes along the entire
displayed energy range, they are not observed in Figure 3a
because higher-order modes mask the tail of the dipolar
resonance. Further discussion of the analytical model can be
found in the Supporting Information.
In conclusion, we have described, with high spatial

resolution, the coupling of MNPs to WGMRs using fast
electrons, observed from both energy absorption (EELS) and
light emission (CL) measurements. While CL can be used to
improve the experimental spectral resolution, EELS provides
rich and complete absorption information over a large spectral
range: a compelling example on how EELS and CL can be
used together to provide self-complementary information. The
combined EELS−CL measurements would be even more
relevant if the electron energy could be changed without
causing major microscope misalignment. Beyond its remark-
able agreement with experiments, FDTD-simulated energy-loss
spectroscopy provides us with a deep physical insight into the
coupling mechanism. Finally, the plasmon resonance excitation
by the electron probe allows for the manipulation of the
gallery-mode polarization by either coupling to TM or to both
TM and TE resonances. With the advent of a new generation
of monochromated STEMs, experiments requiring such high
spectral and spatial resolution are now possible. With this
work, we help to open a path for high-quality-factor and small-
modal-volume photonic devices to be scrutinized in a STEM.
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