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ABSTRACT: We theoretically investigate the tomographic reconstruction of the
three-dimensional photonic environment of nanoparticles. As input for our
reconstruction we use electron energy loss spectroscopy (EELS) maps for different
rotation angles. We perform the tomographic reconstruction of surface polariton
fields for smooth and rough nanorods and compare the reconstructed and
simulated photonic local density of states, which are shown to be in very good
agreement. Using these results, we critically examine the potential of our
tomography scheme and discuss limitations and directions for future develop-
ments.
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■ INTRODUCTION
Nano optics deals with light confinement at the nanoscale.1,2

This is achieved by binding light to surface resonances of
nanoparticles, such as surface plasmon polaritons for metallic
nanoparticles3 or surface phonon polaritons for dielectric
nanoparticles.4,5 These resonances come along with strongly
localized fields and allow squeezing light into extreme
subwavelength volumes, which can be exploited for various
applications.6

Because of the diffraction limit of light, the strongly localized
fields cannot be directly imaged in optical microscopy. In recent
years, electron energy loss spectroscopy (EELS) has become a
highly successful technique for imaging electromagnetic fields at
the nanoscale and with high energy resolution.7−10 In EELS,
swift electrons pass by or through a nanoparticle and loose with a
certain probability energy by exciting surface resonances. By
raster-scanning the electron beam over the specimen and
measuring the number of electrons that have lost a certain
amount of energy, one obtains information about the electro-
magnetic fields at the nanoscale.2,11 However, the technique
does not provide direct information about the three-dimensional
fields but only about the averaged interaction along the entire
electron trajectory.

EELS tomography is a variant of electron tomography,12

where the three-dimensional structure of a specimen is
reconstructed from a collection of transmission electron
micrographs for various tilt angles. In EELS, the reconstruction
is complicated by the fact that the loss does not occur at a
specific position of the specimen, but is a highly nonlocal
process.11 EELS tomography of surface plasmons was first
suggested independently in refs 13 and 14, where the latter paper
demonstrated experimentally the reconstruction of localized
surface plasmon modes for a silver nanocube. While these

seminal papers employed the quasistatic approximation,2,11

successive work showed how to extend the scheme to full
retardation15 and demonstrated its applicability for single and
coupled silver nanoparticles.16,17

In a recent paper,18 we have brought EELS tomography from
the optical to the mid-infrared regime and have demonstrated
experimentally the reconstruction of localized surface phonon
polaritons for a MgO nanocube. Contrary to surface plasmon
polaritons, the use of the quasistatic approximation is perfectly
justified for surface phonon polaritons sustained by nano-
particles with dimensions of a few hundred nanometers. This
considerably simplifies the methodology for the tomographic
reconstruction. While going full circle from the quasistatic
tomography of surface plasmon polaritons in our initial work13

to quasistatic tomography of surface phonon polaritons,18 we
have gained quite some understanding of the critical elements in
EELS tomography, and our approach has matured considerably.
The time is ripe for a critical re-examination and reinterpretation
of our tomography scheme.

In this paper we present a theoretical study of EELS
tomography for prototypical dielectric nanoparticles. We submit
a tilt series of simulated EELS maps to our tomography scheme
in order to extract parameters characterizing the nanophotonic
environment. For this parametrized photonic environment, we
compute the photonic local density of states (LDOS),1,2,19
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which is compared with independent simulation results. From
this comparison, we examine the strengths and weaknesses of
our tomographic reconstruction scheme.

The photonic LDOS is a concept borrowed from solid state
physics and accounts for the number of photonic modes per unit
frequency and volume. In free space, the photonic LDOS is1,2

(we use SI units throughout)

=
c

( )0

2

2 3 (1)

where ω is the angular frequency and c the speed of light. The
photonic LDOS governs the power dissipated by an oscillating
dipole through

=P
p

12
( )0

2 2

0
0 (2)

where p is the oscillator’s dipole moment and ε0 the free-space
permittivity. Alternatively, we can relate via P0 = ℏωγ0 the power
dissipation to the decay rate γ0 of a quantum emitter. The
concept of the photonic LDOS comes to full glory in
nanophotonics, where the light−matter interaction becomes
dramatically enhanced through surface excitations of nano-
particles, such as surface plasmon or phonon polaritons. The
enhancement of the photonic LDOS ρ(ω) can be in the range of
hundreds to thousands in comparison to its free-space value
ρ0(ω).20 Correspondingly, quantum emitters can transfer
energy to the nanophotonic environment more efficiently, and
their decay rate or power dissipation P is increased by the LDOS
enhancement according to

=P P: :0 0 (3)

Below we will compute the LDOS enhancement ρ:ρ0 using
the photonic environment reconstructed from EELS maps. It is
obvious that electrons and oscillating dipoles couple quite
differently to the nanophotonic environment. For this reason,
the LDOS reconstruction from EELS data is quite delicate and
provides a stringent testbed for our tomography approach.

We have organized our paper as follows. In the Theory section
we present the theory and methodology of our tomographic
reconstruction. We have tried to keep the presentation as
compact and brief as possible and refer to the literature for the
detailed derivations whenever possible. Some technical issues
are transferred to Appendix, Details about Orthogonal Matrix.
In the Results section we present the tomography results for
smooth and rough nanorods and compare the reconstructed and
the simulated photonic LDOS. Finally, in the Summary section
we put our tomography into a broader context, examine critically
the strengths and weaknesses of our approach, and identify lines
for future research.

■ THEORY
For MgO nanoparticles the surface phonon polariton energies
hν are of the order of 100 meV, corresponding to a free-space
wavelength λ = c/ν ∼ 12 μm. For nanoparticle dimensions of
approximately hundred nanometers we can thus safely introduce
the quasistatic approximation,2 where the electric field is
expressed in terms of a quasistatic potential V(r) through E(r)
= −∇V(r) and we keep the frequency dependence of the
permittivity functions ε(ω).
Green’s Functions. In the following we consider the

problem depicted in Figure 1a, where a charge located at
position r′ interacts with a dielectric nanoparticle situated in a

background medium with dielectric constant ε0. Green’s
functions provide an elegant and efficient method for solving
such problems. We first introduce the Green’s function defined
through2,21

=r r r rG( , ) ( )2 (4)

which gives the potential at position r for a unit charge located at
position r′. In an unbounded medium, the Green’s function
would be given by the usual expression

=
| |

r r
r r

G ( , )
1

40 (5)

and the potential associated with a charge distribution ρ(r) can
be expressed as

=
| |

r
r

r r
V r( )

( )
4

dinc
0

3

(6)

In presence of the nanoparticle, this incoming potential will
induce a reflected potential associated with the particle response.
To account for this, we split the total Green’s function into two
parts

= +r r r r r rG G G( , ) ( , ) ( , )0 refl (7)

where the reflected part is a solution of Laplace’s equation which
is chosen such that Maxwell’s boundary conditions are fulfilled
at the nanoparticle boundary. Suppose for a moment that the
reflected Green’s function is at hand. It can then be shown that in
EELS the loss probability is related to the reflected Green’s
function via2,11

= [ * ]R r r r rG r r( , )
1

Im ( ) ( , ) ( ) d d0 el refl el
3 3

(8)

where R0 = (x0, y0) is the impact parameter of the electron beam
propagating along the z direction (aloof geometry), ℏω is the
loss energy, and ρel(r) is the charge distribution of the swift
electron. The term in brackets of eq 8 accounts for a self-
interaction process where the swift electron polarizes the
nanoparticle and the polarization acts back on the electron. This
nonlocal response is mediated by the reflected Green’s function.
Similarly, the power dissipated by a dipole oscillating with
frequency ω becomes2

= [ · · ] = =p p r rP P G
2

Im ( )( ) ( , ) r r r0
0

refl 0 (9)

Figure 1. (a) Schematics of Green’s function. In free space the Green’s
function G0(r, r′) gives the potential at position r for a unit charge
located at position r′. In presence of a nanoparticle one must
additionally add a reflected Green’s function that accounts for the
nanoparticle response. (b) The reflected Green’s function can be
expanded using a complete set of eigenpotentials Vk(r). In our
tomography scheme we can also start from the modes associated with a
simpler reference boundary ∂Ω0 rather than the actual nanoparticle
boundary ∂Ω, and expand the reflected Green’s function using the
reference modes. For details, see text.
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where P0 is the free-space dissipation, p is the dipole moment,
and r0 is the position of the dipole. The ratio P:P0 gives the
enhancement of the photonic LDOS, see also eq 3. The
expressions given in eqs 8 and 9 are two examples for the
enhancement of light−matter interactions in the presence of
nanoparticles and show that the nanophotonic environment is
fully characterized upon knowledge of the reflected Green’s
function.
Eigenmode Decomposition. A powerful and convenient

representation of the reflected Green’s function is in terms of
geometric eigenmodes uk(s) and eigenvalues λk, where s is a
position located on the boundary of the nanoparticle.2,22,23

These eigenmodes form a complete set of basis functions. To
each eigenmode we can associate an eigenpotential

=
| |

r
s

r s
V

u
S( )

( )
4

dk
k

(10)

which is a solution of Laplace’s equation that fulfills Maxwell’s
boundary conditions at the nanoparticle boundary. We can then
decompose the reflected Green’s function outside the nano-
particle in terms of these eigenpotentials via2,23
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+

+
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where Λ(ω) is an expression that solely depends on the
permittivities of the nanoparticle and the embedding medium.
Inserting eq 11 into the EELS loss probability of eq 8 leads us to

=R r rL V r( , )
1

( ) ( ) ( ) d
k

k k0
0

el
3

2

(12)

with the line shape function

=
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+
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Equation 12 is a particularly useful decomposition of the loss
probability in terms of surface phonon polariton eigenmodes.
Each eigenmode contributes with the line shape function Lk(ω)
and the oscillator strength given by the square modulus term,
which is governed by the interaction energy between the charge
distribution of the swift electron and the eigenpotential Vk(r).
Similarly, the power dissipated by an oscillating dipole of eq 9
can be decomposed into eigenmodes via

= + | · | =p rP P L V
2

( ) ( ) r r
k

k k0
0

2
0

(14)

with a corresponding interpretation in terms of line shape
functions and oscillator strengths. From the dissipated power
one can obtain the photonic LDOS using eqs 1 and 3, where one
often additionally averages over all dipole orientations to
account for the random orientation of quantum emitters in
typical experiments.1

Tomographic Reconstruction of Eigenmodes. It is
apparent from eqs 12 and 14 that we can compute the EELS loss
probability Γ(R0, ω) and the LDOS enhancement P:P0, or any
other related response function, once the geometric eigenmodes
uk(s) and the line shape function Lk(ω) are at hand. Expressed
differently, the nanophotonic environment is fully characterized
upon knowledge of uk(s) and Lk(ω). We can now formulate the
goal of our tomography approach. Suppose that we are in

possession of the EELS loss probabilities Γ(R0, ω), ideally for
various impact parameters and electron propagation directions,
but do not know the eigenmodes uk(s) and line shape functions
Lk(ω): can we obtain through solution of an inverse problem a
viable approximation for uk(s) and Lk(ω)? And if yes, how?

Optimization for Modes on the Nanoparticle Boundary.
Consider first the situation that the nanoparticle boundary is
known and that we are seeking for the linshape functions and
eigenmodes Lk, uk(s). This corresponds to the situation
previously investigated in ref 18. Let su ( )0 be a complete set
of basis functions on the boundary. We shall refer to these modes
as reference modes. As shown in the Appendix, Details about
Orthogonal Matrix, the eigenpotentials of eq 10 can be
expanded in terms of these modes via

=
| |

r
s

r s
V

u
S( )

( )
4

dk k

0

(15)

with being an orthogonal matrix. We can now formulate the
tomographic reconstruction scheme for a given set of
experimental EELS maps.

1. Find some reference modes su ( )0 whose gross features are
expected to be similar to those of the true eigenmodes
uk(s). This point is irrelevant for a complete basis, but
becomes crucial for actual reconstructions where the basis
has to be truncated.

2. Start with some initial guess for the line shape function Lk
and orthogonal matrix , and compute the reprojected
maps via eq 12. Use an optimization routine for Lk, to
obtain the best possible agreement between experiment
and reprojection. Note that in principle Lk(ω) depends on
frequency, but for a fixed loss energy the line shape
functions can be treated as mere numbers.

3. Use the optimized parameters to compute other
quantities, such as the photonic LDOS.

Optimization for Modes on Reference Boundary. The
above scheme can be also generalized to cases where the true
nanoparticle boundary ∂Ω is not known or is too complicated to
be used in actual reconstructions. We start by introducing a
reference boundary ∂Ω0 that fully encapsulates the nanoparticle,
see also Figure 1b. In our modified approach we are not aiming
for a reconstruction of the eigenmodes uk(s) themselves, but of
the eigenpotentials of eq 10 outside of the reference boundary.
There they can be expressed as generic solutions of Laplace’s
equation21

=
| |

r
s

r s
V S( )

( )
4

dk
k

0 (16)

where σk(s) specifies the normal derivative of the potential on
∂Ω0 (von Neumann boundary condition). We can now use a
complete set of basis functions su ( )0 on ∂Ω0 for the expansion of
σk(s) to arrive at

=
| |

r
s

r s
V

u
S( )

( )
4

dk k

0

0 (17)

where is a nonorthogonal matrix formed by the expansion
coefficients. The tomographic reconstruction can now be
performed in complete analogy to the scheme presented
above, with the only exception that has to be replaced by a
nonorthogonal matrix.
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Optimization Loop. In the following we discuss the
optimization procedure in slightly more detail, see also Figures
2 and 3. We provide a unified description for the optimizations
using modes defined on either the nanoparticle or the reference
boundary. In the first case, is an orthogonal matrix. In our
computational approach we have to truncate the basis and keep
only n representative modes, where n is of the order of several
tens to hundreds. Correspondingly, ×n n is a matrix of size n × n,
see also Appendix, Details about Orthogonal Matrix, for the
parametrization of this matrix. In the case of a reference
boundary, is a full matrix. In principle we can now use different
truncation numbers m and n for the reconstructed eigenpoten-
tials and basis functions, respectively, and ×m n becomes a

matrix of size m × n. In most cases it is sufficient to consider
around 10 eigenpotentials, whereas the truncation number for
the basis should be chosen considerably larger. Let

= { }Rx ,i
i i

0
( ) ( ) (18)

be a set of impact parameters and tilt angles for a fixed loss
energy, and Γexp(xi) is the corresponding experimental EELS
maps. We only consider aloof electron trajectories that do not
penetrate the nanoparticle. The interaction energy between the
swift electron and a reference mode su ( )0 is

= =r r s sx V r V u S( ) ( ) ( ) d ( ) ( ) di el
0 3

el
0

0 (19)

Figure 2. Schematics of tomographic reconstruction for a rough nanorod. The reference boundary is formed by a smooth rod, see panels on top of the
figure. The experimental EELS maps Γexp are obtained for a specific loss energy and for various rotation angles, we only keep aloof electron trajectories
that do not penetrate the smooth rod. We start with some initial guess for the optimization parameters Lk, and compute the reprojected EELS maps Γ
using eq 20. These parameters are optimized until a local minimum is reached by the optimization algorithm. In the lowest row we show the relative
error |Γexp − Γ|:Γexp between the experimental and optimized maps. The solid lines indicate the contours for an error of 0.1%. Once the parameters Lk,

are at hand, we can compute other quantities such as the photonics LDOS.

Figure 3. Reference and reconstructed modes. In our tomographic reconstruction we use as reference modes su ( )0 the eigenmodes of the Laplace−
Beltrami operator. Using the optimized parameters Lk, we mix the modes to obtain the reconstructed modes shown on the right-hand side for the
dipole and quadrupole resonances. For the smooth rod, is an orthogonal matrix of size n × n, where n is the truncation number of the basis. For the
rough rod, is a full matrix of size m × n, where m is the number of eigenpotentials to be reconstructed. From the knowledge of we can compute the
geometric eigenpotentials Vk(r) outside the reference boundary. The bar plot on the right-hand side reports the reconstructed line shape parameters
for the dipole (blue) and quadrupole (red) resonances, the modes are sorted in decreasing order of Lk and the largest contributions are due to the
modes shown in the insets.
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where Vel(r) is the potential associated with the charge
distribution ρel(r). When the nanoparticle boundary is known,
the reference boundary in the above boundary integral is
identical to ∂Ω. The loss probability of eq 12 can then be written
in the compact form

=x L x L x( ; , )
1

( ( )) ( ( ))i k
k

k i k k i
0 ,

(20)

We can now define a cost function

= | |J L x x L( , )
1
2

( ) ( ; , ) mink
i

i i kexp
2

(21)

that gives the “distance” between the experimental and
reprojected EELS maps. This cost function is submitted to an
optimization routine, such as a conjugate-gradient or quasi-
Newton one,24 which provides us with the optimized
expressions for Lk, . Some details about the parametrization
of the orthogonal matrix, as well as the computation of the
derivative of the cost function with respect to the optimization
parameters are given in Appendix, Details about Orthogonal
Matrix.

■ RESULTS
In ref 18 we have applied our tomography scheme to
experimental EELS maps for a MgO nanocube. In this work
we proceed differently and investigate the working principle of
our tomography scheme using simulated data only.

1. We first compute for each loss energy EELS maps for a
series of rotation angles, see also Figure 2. To be
consistent with our previous notation, we denote these
simulated EELS maps as Γexp and will refer to them as
experimental EELS maps.

2. These maps are submitted to our tomography scheme
based on eq 21 in order to obtain the optimized
parameters Lk and that specify the nanophotonic
environment.

3. Using eq 14 together with the optimized parameters, we
compute the photonic LDOS and will refer to it as the
reconstructed photonic LDOS.

4. Using eq 9, we compute the photonic LDOS directly, with
a simulation approach to be discussed below, and will
refer to it as the simulated photonic LDOS.

For ideal reconstruction, the simulated and reconstructed
LDOS maps should be identical. Any deviation between the two
maps can thus be attributed to deficiencies of our approach,
caused for instance by the truncation of the reference basis su ( )0

or a trapping of the optimization algorithm in a local minimum.
We apply our tomography scheme to prototypical systems of a

smooth and rough nanorod with a diameter to length ratio of
approximately 1:2.5, see also Figure 4 and ref 25 for a detailed
discussion of the rod modes. The rough rod has been generated
by adding stochastic height variations to the smooth surface of
an ideal nanoparticle following the prescription given in ref 26.
We shall not be concerned whether such nanoparticles can
indeed be fabricated with the material system under
investigation. As we are working within the quasistatic regime,
the actual size of the nanorods is irrelevant, and the results can be
easily scaled to any size.

Computational Details. All our simulations are performed
with the quasistatic classes of the NANOBEM toolbox,27 which
is based on a Galerkin scheme with linear shape elements. See,
for example, ref 2 for a detailed discussion. The parametrization
of the MgO dielectric function is the same as in refs 18 and 28.
The nanorod boundaries are discretized using more than 3000
boundary elements of triangular shape. We checked that for such
fine discretizations we obtained converged results. As for the
EELS simulations, we consider the limit of large electron
velocities v, where the potential for a swift electron with impact
parameter R0 takes the form

= | |r R R RV
e

v
( ; )

2
lnel 0 0 (22)

with e being the elementary charge and R = (x, y). We have
previously shown29 that this simplified expression gives almost
the same results as simulations based on the full Maxwell’s
equations.

As for the reference modes su ( )0 , we did not choose the usual
geometric eigenmodes2,23 for two reasons. First, in order to
demonstrate that our approach indeed works for any meaningful
set of basis functions. Second, we observed that the geometric
eigenmodes computed with the NANOBEM toolbox are often
strongly localized around sharp corners or edges, such that a
large number of such modes would be needed for a useful
expansion. In this work, we choose for su ( )0 the eigenmodes of
the Laplace−Beltrami operator, which is a generalization of the
Laplace operator for curved boundaries and is known to provide
extremely smooth basis functions.30 The modes were addition-
ally orthogonalized using eq 25.

In our optimization approach we truncate the Laplace-
Beltrami basis using the n modes of highest eigenvalue, where a
value of n ≈ 100 turned out to be a good compromise between
reasonably fast optimizations and sufficiently accurate results.
The optimization was performed with the built in MATLAB
function fminunc using a quasi-Newton algorithm together with
a relatively small function and optimality tolerance of 10−8. In all
our simulations, we typically needed about 2000 iterations to
reach a local minimum.
Smooth Rod. We start by discussing the smooth rod shown

in Figure 4. The loss spectra exhibit three peaks, which can be
attributed to a dipolar mode (70 meV), a quadrupolar mode (80

Figure 4. Loss spectra for smooth and rough nanorod, and for impact
parameters located on the long (blue) and short (red) rod axis, see
inset. We consider aloof electron trajectories with a propagation
direction out of the image plane. One observes a dipole resonance
around 70 meV, a quadrupole resonance around 80 meV, and a peak
attributed to a multitude of modes around 90 meV.
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meV), and a peak that is composed of a multitude of modes (88
meV). For the smooth rod, the reference boundary ∂Ω0 is
identical to the true nanoparticle boundary ∂Ω. Note that the
Laplace−Beltrami eigenmodes provide a (truncated) basis that
does not coincide with the true geometric eigenmodes.
Simulated and reprojected maps originating from our
optimization algorithm are typically extremely similar, see
lowest row in Figure 2 for the more difficult case of the rough
nanorod.

Figure 5 shows the simulated and reconstructed LDOS maps
in the symmetry plane (left column), in planes away from the
rod (other columns), and for the loss energies reported in the
figure. We first consider the dipole mode shown in panel (a).
The LDOS can be interpreted for an oscillating dipole as the

enhancement of the dissipated power, see eq 9, throughout we
average over all possible dipole orientations. Close to the rod, an
oscillating dipole couples with comparable strength to all surface
phonon polariton modes. This can be seen both in the symmetry
plane of the rod (first column, logarithmic color scale), as well as
in the plane closest to the rod (second column, linear color
scale), where the photonic LDOS is large and unstructured close
to the rod boundary. When moving away from the rod (other
columns from left to right), the coupling strength between the
oscillating dipole and the rod resonance modes have different
distance dependencies, which are governed by the oscillator
strengths given in eq 14. For the chosen loss energy the dipolar
rod mode becomes strongest at larger distances, as can be

Figure 5. Simulated and reconstructed LDOS maps for the different loss energies reported in the panels and in the different planes indicated on top of
the figure. The electron propagation direction is out of the image plane and the lines at the rod centers indicate the tilt axis. (a) Simulated LDOS maps
for dipole mode, (b, c) reconstructed LDOS maps for different numbers n of Laplace−Beltrami eigenmodes. Same for (d, e) quadrupole resonance and
(f, g) multitude of modes. The LDOS maps in the first column are displayed for a logarithmic color scale, in the other columns we use a linear color
scale. All maps are scaled to the maxima of the simulated maps. The solid lines report the contours for 20% of the maximum of the simulated LDOS in
the respective planes.
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inferred from the two lobes in the LDOS maps located at the rod
caps.

Figure 5b,c shows results for the reconstructed LDOS using
(b) n = 100 and (c) 20 Laplace−Beltrami reference modes.
Further away from the rod, the simulated and reconstructed
results agree well for both truncation numbers n. For distances
closer to the rod, the larger number of eigenmodes provides
better agreement. This is in accordance to our previous
reasoning that oscillating dipoles close to the rod couple to a
larger number of eigenmodes, and thus a larger number of
modes is needed for the reconstruction.

In Figure 6 we give a quantitative comparison between the
simulated (full lines) and reconstructed (dashed lines) LDOS

values for cuts along the long rod axis and for dipole positions
outside the nanoparticle. The true LDOS enhancement would
depend on the actual size of the nanorod; for simplicity, we give
the results in arbitrary units. Also, the reconstruced LDOS cuts
are scaled by a constant factor, where it is not obvious how this
factor could be obtained in the absence of EELS loss
probabilities given in absolute numbers. We here do not enter
into the question of how to extract the absolute numbers of the
reconstructed LDOS. Besides this unknown prefactor, the
simulated and reconstructed LDOS values agree extremely well,
with the possible exception of the smallest distances where a
larger number of eigenmodes might be needed.

Finally, in the remaining panels of Figure 5, we compare the
simulated and reconstructed LDOS for the (d, e) quadrupolar
rod mode and the (f, g) multitude of modes. It can be seen that
the reconstruction works well for the quadrupolar mode.
Comparison with results for n = 20 (not shown) reveal that in
this case a larger number of eigenmodes is strictly needed to
obtain good agreement. For the multitude of modes shown in
panels (f) and (g), the agreement between simulation and
reconstruction is reasonable, but not overly good. In particular,
for the smallest distances, the reconstructed maps show sharp or

asymmetric features, which are absent in the simulated maps.
From these results we conclude that the LDOS reconstruction
works best for loss peaks that are governed by a few modes only.

In Figures S1 and S2 we also show results for a nanorod with
reduced symmetry, which is obtained by squeezing the rod in all
axes directions. Again, the simulated and reconstructed LDOS
maps are in very good agreement. We also investigate in Figures
S3 and S4 the influence of the number of optimization iterations
on the reconstructed LDOS maps. While the gross features of
the maps are already reconstructed after a few tens to hundred
iterations, it takes a few thousand iterations until reaching
convergence.
Rough Rod. The case of the rough rod shown in Figure 4 is

considerably more difficult. We keep considering the same
reference modes as for the smooth rod, and select the reference
boundary ∂Ω0 such that it fully encapsulated the boundary ∂Ω of
the rough rod. Note that this reference boundary is identical to
the one of the smooth rod. Figure 2 shows for the dipolar mode
the simulated (“experimental”) EELS maps and the reprojected
ones. The relative error between these maps is small throughout.

In Figure 7 we show the simulated and reconstructed LDOS
maps for the rough nanorod. We compare different planes that
are (a−f) parallel and (a*−f*) perpendicular to the electron
beam direction. The main difference between these two
configurations is that in the parallel case we reconstruct the
LDOS throughout in regions through which swift electrons have
traveled. In contrast, for the perpendicular case we reconstruct
the LDOS also in planes above the nanoparticle through which
no electron has traveled because of our restriction to aloof
trajectories.

Let us consider the parallel case first. With the possible
exception of the smallest distance, the agreement between
simulated and reconstructed LDOS maps is extremely good,
both for the dipolar and quadrupolar modes. Both asymmetries
as well as hot spots, caused by localized fields in the vicinity of
protrusions of the rough rod, are well reproduced by our
tomography scheme. Things somewhat change for the
perpendicular geometry shown in panels (b*) and (e*), where
the comparison is reasonable but not overly good. We
performed additional simulations where the tilt series for Γexp
is complemented by EELS maps where the nanorod is first
rotated around the x-axis by 90° before being submitted to the
same tilt series around y. As can be seen in panels (c*) and (f*),
with this procedure we again obtain extremely good agreement
between simulated and reconstructed LDOS maps. This shows
that our tomography scheme works best for regions through
which electrons have traveled.

We finally investigate in Figure 8 the impact of the cutoff
parameters (m, n) on the reconstructed LDOS for the dipole
mode. Recall that m is the number of eigenpotentials to be
reconstructed and n is the cutoff parameter for the basis
functions. Close to the particle (second column) a larger
number n of basis states leads to a better agreement with the
simulated LDOS, shown in the first row. When moving away
from the nanoparticle, the agreement between simulated and
reconstructed LDOS maps is very good for all chosen simulation
parameters. This demonstrates that our reconstruction scheme
is robust and that the optimization results do not depend
decisively on the input parameters.

■ DISCUSSION
In the previous sections we have presented the methodology of
our tomographic reconstruction scheme and have investigated

Figure 6.Cuts through the LDOS maps shown in Figures 5a,b along the
long rod axis at y = 0. The solid lines report simulation results, the
dashed lines show the reconstructed results. The LDOS enhancements
are given in arbitrary units, with a constant prefactor for the
reconstructed LDOS maps. For a discussion, see text. Larger LDOS
enhancements correspond to positions closer to the nanorod, the colors
are in agreement with those of the planes shown on top of Figure 5.
Distances are given in units of the rod length L.
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the approach for prototypical nanophotonic structures. In this
section we start by discussing our scheme within a broader
context, and then address limitations, dos and don’ts, as well as
extensions of our tomographic reconstructions.
Working Principle. The basic working principle of our

tomographic reconstruction is shown in Figure 9 and consists of
the triad formed by experiment, resonance modes, and reference
modes. In short, the resonance modes are needed to formulate
the theory, and the reference modes to provide a para-
metrization of the nanophotonic environment and to perform
the actual reconstruction. The experimental data are the primary
resource for the reconstruction. For this reason, the quality of
the experimental data directly influences the quality of the
tomographic reconstruction. Some further considerations about
experiments will be given below.
Resonance Modes. The nanophotonic environment outside

the nanoparticle is fully characterized in terms of the reflected
Green’s function of eq 11, which we repeat here in compact form

= +r r r rG V M iL V( , ) ( )( ) ( )
k

k k k krefl
(23)

Mk and Lk are the real and imaginary parts of the term given in
brackets of eq 11. The eigenpotentials Vk(r) provide the
preferred physical basis, only with this basis the reflected Green’s
function can be written in the diagonal form of eq 23. A similar
decomposition of the Green’s function can be also obtained in
the retarded case when using quasinormal modes,31−33 as will be
discussed below. For this reason, from here on we use the more
general expression of resonance modes rather than geometric
eigenmodes, for which we have developed our theory so far.

With these modes, both the EELS loss probability of eq 12 as
well as the power dissipation of an oscillating dipole, eq 14, can
be written as the sum over individual loss channels. With any
other basis one would obtain some kind of mixing between
different modes. This particular form has the additional
advantage that the line shape function Lk is always positive, at
least for lossy materials, which can be used in our optimization
procedure as a constraint, see Appendix, Details about
Orthogonal Matrix. Note that our tomography scheme only
allows for the reconstruction of Lk, which accounts for the loss
properties of the nanophotonic environment, but not for the
propagation properties described by Mk. As EELS and LDOS
account for energy losses of electrons and oscillating dipoles,
respectively, this is not a problem here. However, additional
experimental input or a reconstruction for various loss energies
together with a Kramer−Kronig analysis would be needed for a
reconstruction of Mk.

To summarize this part, resonance modes are needed to
formulate the abstract theory, without making contact to the
actual shape or composition of the nanoparticle. Without
resonance modes it would be unclear which properties of the
nanophotonic environment govern EELS and LDOS, and which
properties can be reconstructed using an inverse scheme.
However, at no point of our approach we require explicit
knowledge of the actual form of the resonance modes or line
shape functions.

Reference Modes. The reference modes are the device
needed for the actual reconstruction. They allow for a suitable
parametrization of the nanophotonic environment, where the
viable parameters can be extracted from the optimization loop
using the experimental and reprojected EELS maps. In principle,

Figure 7. Same as Figure 5, but for a rough nanorod and for the (a−c) dipolar and (d−f) quadrupolar rod resonances. In the reconstruction we
consider n = 200 reference modes for a smooth nanrod (black contour shown on top) and m = 20 modes to be reconstructed. We compare LDOS
values in planes (a−f) parallel and (a*−f*) perpendicular to the electron propagation direction. The lines and dots in the rod center indicate the tilt
axis. In panels (b) and (e), we consider a tilt series where the nanoparticle is rotated around the y-axis only, whereas in panels (c) and (f), we
additionally consider a rotation around the x-axis by 90°, followed by the same tilt series around y.
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for a complete basis the choice of the reference modes is
irrelevant. However, in all practical cases one has to truncate the
basis, which should thus be based on an educated guess and
should include the gross features of the expected resonance
modes from the outset.
Boundary Element Method Approach. Although all our

calculations presented here and elsewhere13,15−18 have been
performed using a boundary element method (BEM) approach,
it does not play an exceptional role in our tomography scheme.
The reference modes are fixed by specifying their values on a
properly chosen reference boundary, see Figure 9. Away from
the boundary the modes propagate according to Laplace’s
equation, see eq 10, or the source-free Maxwell’s equations in
the retarded case. This propagation is reminiscent of Huygens’
principle for the wavefront propagation in free space and can be
well described within BEM, but otherwise, our tomography
makes no particular use of it.
Frequently Asked Questions. All our cards are on the

table now. Up to here, we have presented and examined our
tomography approach in some detail, and have put it into a
broader context. However, a number of open or not fully clear
issues remains. In the following we address these issues in the
form of frequently asked questions. As will become apparent,
only some of these questions can be answered definitely while

others remain open. In this sense, the following discussion is
meant to summarize our present understanding of the field, to
make aware where things can go wrong, and to identify
directions for future research.

Howmuch preknowledge is needed? Any tomography or inverse
scheme requires some sort of preknowledge, less preknowledge
usually makes an approach more general and powerful. In our
case, we assume that the nanophotonic enviromnent can be
expressed in terms of resonance modes, and that the potentials
away from the boundary propagate as solutions of Laplace’s
equation.

How many reference modes (and which) are required? For any
practical reconstruction one has to truncate the basis. The
proper choice and truncation of the reference basis thus enters as
an additional preknowledge. For spectrally isolated resonances
often a few tens of modes suffice, while in other cases up to
hundred modes might be needed. We are not aware of any
general approach for determining the correct number of
reference modes, so we advice potential users to vary the
number and to obtain the best cutoff parameter on a case-to-case
basis.

Are more reference modes always better? More modes slow
down the optimization and require more iterations until
reaching convergence. With the simulated EELS data used in

Figure 8. LDOS maps for the dipole mode of a rough nanorod and for different (m, n) cutoffs used in the optimization. Here m is the number of
eigenpotentials to be reconstructed and n is the number of basis modes. As can be seen, the reconstruced LDOS does not depend decisively on the
chosen parameters.
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this paper the quality of the reconstruction did not depend
decisively on the truncation number.

What is the typical computational cost? Depending on the
truncation number, typical optimization times range from one to
several minutes on a normal computer. The code developments
on top of a BEM solver, such as the NANOBEM one,27 are
moderate. In the future we consider publishing our code to make
it accessible to interested users.

Are there dif ferences betweenEELSandLDOS? The question is
somewhat odd, obviously EELS accounts for the energy loss of
swift electrons and LDOS accounts for the enhancement of the
decay rate of oscillating dipoles. On the other hand, the
interaction potential of the swift electron to the nanoparticle has
a log(r) spatial dependence while the dipole has a 1/r2

dependence. For this reason, EELS maps are governed by the
long-range features of the potential and LDOS maps by the
short-range features. The prediction of LDOS maps from
experimental EELS maps is thus a challenging and difficult task,
and the good agreement between simulated and reprojected
LDOS maps reported in this work should not be taken as
granted.

Does the optimization always succeed? In all reconstructions
considered in this work the optimization algorithm ended up in a
minimum. However, there is no guarantee that this is a global
minimum. Our results never depended decisively on the initial
values for Lk, , which we initially set equal to one. Note that
zeros would be a bad choice because the derivatives of the cost
function with respect to the optimization parameters would

equate to zero then. We generally recommend using quasi-
Newton optimizations rather than conjugate gradient ones,
because they typically access larger portions of the parameter
space.

How much experimental input is needed? We will not give too
much advice on the experiments here, interested readers might
consult our previous work16−18 to see what worked for us.
Depending on the electron microscope, contamination might
play a role and might limit the amount of experimental data. As
has been discussed before, our tomography seems to work best
for regions through which swift electrons have traveled. The
reconstruction of blind spots is possible, but the results should
be handled with care.

What is the impact of noise? The main purpose of this paper has
been to demonstrate that the photonic LDOS can be
reconstructed in principle from EELS tomography. As a proof
of principle, we have used simulated EELS maps without any
noise. In Figure S5, we show EELS maps where noise with a
Poissonian distribution has been added artificially. When
submitting these noisy maps to our optimization procedure,
see Figures S6 and S7, we observe that the LDOS can be only
reconstructed reliably sufficiently far away from the nanorod.
Close to the rod the added noise leads to artificial features that
are not present in the simulated maps. However, we also observe
that much better agreement could be achieved if the
optimization was terminated after say 100 iterations, with
increasing iterations the optimization ends up reconstructing the
noisy features rather than the real physical ones. We expect that
this deficiency could be overcome with more refined
optimization procedures, but will not enter into this topic here.

How to address retardation? For surface phonon polaritons the
quasistatic approximation works perfectly, but things might be
more problematic for the reconstruction of other surface modes,
such as surface plasmon polaritons. In the past we have
developed a methodology for surface plasmon tomography,
including retardation, and have applied the scheme to
experimental EELS data.15−17 There we used a biorthogonal
basis, which shares many features with the resonance modes
presented here, but provides no justification for a strictly positive
line shape function. For this reason, we opted for a compressed
sensing optimization that favors expansions with as few modes as
possible, where luckily all of them contributed with a positive
weight to the loss probability. In light of our present analysis, we
suggest a slight modification of our previous approach. First, in
the retarded case the preferred basis is given by quasinormal
modes,27,31−33 which have received considerable interest
recently. With these modes we can decompose the dyadic
Green’s tensor for the full Maxwell’s equations in a form similar
to eq 23 tomographic reconstruction should be possible along
the lines sketched in the present work. There remain a number
of open issues, such as the proper choice of the reference modes
or the consideration of complex mode functions, but we do not
foresee any major roadblock. As a side remark, it is no surprise
that the decomposition of the reflected Green’s function in
terms of resonance modes looks similar in the quasistatic and
retarded case: such decompositions are in the spirit of generic
singular value decompositions, where the special structure is due
to the symmetry property of Green’s function originating from
the reciprocity theorem of optics.

How to address membranes and grids? Membranes or grids are
needed in experiment to support the nanoparticle. One might
wonder about the consequences of such a support in our
tomographic reconstruction. First, modifications of the

Figure 9. Working principle of our tomography scheme. The approach
consists of the triad of experiment, resonance modes, and references
modes. The experimental EELS maps for various tilt angles provide the
basic resource for the reconstruction of the photonic environment. The
resonance modes are used to formulate the theory underlying the
reconstruction, the reference modes provide the parametrization of the
photonic environment and are used for the actual reconstruction. The
parameters Lk, are obtained through an optimization procedure in
order to minimize the difference between the measured and reprojected
maps. As the potentials outside the nanoparticle are solutions of
Laplace’s equation, we can employ a boundary element method (BEM)
scheme to express the potentials through their values on a boundary.
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resonance energies or surface charge distributions of the surface
phonon polaritons can be already properly accounted for with
the present approach, as has been demonstrated in ref 18.
However, in principle also the free-space Green’s function of eq
5 should be modified to account for the dielectric environment
in the presence of a support. This modified Green’s function
should be used in eq 10 to propagate away the potentials from
the boundary. It is the resulting modification of the electron-
nanoparticle interaction that has to be considered. Whether this
modification has noticeable influence on the results has to be
seen.

■ SUMMARY
To summarize, EELS tomography has become a successful
scheme for reconstructing the three-dimensional photonic
environment of nanoparticles with high spatial and energy
resolution. In the past several case studies for plasmonic and
photonic nanostructures have provided beautiful results, which
would have been hard to achieve with other techniques. Yet, we
feel that there is still enough room for improvements and further
investigations. In this paper we have given an in-depth study of a
prototypical nanophotonic system and have demonstrated that
tomographic reconstructions work reliably and without major
difficulties, at least for systems where the quasistatic
approximation can be employed. We hope that this will motivate
more research groups to enter the field, to investigate their
systems with the tools presented here, and to continue
developing EELS tomography with further improvements.

■ DETAILS ABOUT ORTHOGONAL MATRIX
In this appendix we first derive eq 15. We denote the
nanoparticle boundary with ∂Ω and the geometric eigenmodes
with uk(s). These eigenmodes form a complete set of basis
functions and fulfill the orthogonality relation2,22,23

| |
=

s s
s s

u u
dS dS

( ) ( )
4
k k

kk (24)

Let su ( )0
0 be the reference basis functions, which are assumed

to fulfill a similar orthogonality relation,

| |
=

s s
s s

u u
dS dS

( ) ( )
4

0 0

(25)

This can always be achieved for a set of basis functions using a
Gram−Schmidt-type orthogonalization. As su ( )0 forms a
complete basis, we can expand the eigenmodes via

=s su u( ) ( )k k
0

(26)

Inserting this expression into eq 24 and using the
orthogonality relation of eq 25, we then immediately observe
that is an orthogonal matrix. In our computational approach
we employ Cayley’s parametrization for orthogonal matrices

= +(1 )(1 ) 1 (27)

where is a skew-symmetric matrix with xij = −xji. Equation 27
has the advantage that one can perform the derivative x/ ij

analytically. To show this, we start from

= + +
x x x

(1 ) (1 ) (1 )1 1
(28)

where, for notational clarity, we have suppressed the subscripts
of x. To evaluate the second term on the right-hand side, we
differentiate =(1 )(1 ) 11 with respect to x. After
some manipulations, this leads to

=
x x

(1 ) (1 ) (1 )1 1 1

Insertion into eq 28 gives

= + +
x x x

(1 ) (1 )(1 ) (1 )1 1 1

We next use + = +(1 )(1 ) (1 ) (1 )1 1 ,
which can be easily proven using + =1 21 (1 )
and that both terms on the right-hand side commute with
(1 ) 1. We then arrive at our final expression

=
x

X
x

2(1 ) (1 )1 1
(29)

In our optimization of the cost function we express the line
shape function through Lk = sk2, which guarantees that Lk is
always positive. The optimization algorithm can be significantly
accelerated by providing in addition to the value of the cost
function also the derivatives with respect to the optimization
parameters. Using eq 20 together with eq 29, the derivative of
the cost function (eq 21) with respect to the parameters sk and
xk of the skew-symmetric matrix can be obtained analytically.
Things are considerably easier for a nonorthogonal matrix where
the derivatives with respect to the matrix elements can be
performed straightforwardly.
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