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Classical wave optics and quantum mechanics share 
strong similarities rooted in the underlying Helmholtz or 
Schrödinger equations1. This very close resemblance is, for 

example, directly translated in the great amount of optical–elec-
tronic analogue phenomena, from the much celebrated Young–
Feynman double-slit experiment2,3 to more exotic yet fascinating 
examples such as corrals4,5 or Anderson localization6,7.

This mesmerizing analogy initiated a long-standing and fruitful 
dialogue between these two fields. A famous example is the devel-
opment of transmission electron microscopy, strongly inspired by 
optical concepts8–10. Conversely, electron microscopy also influ-
enced its photonic counterpart through the discovery of holog-
raphy11. This mutual influence culminated a decade ago when 
electron vortices were predicted12 and measured13–15—these exotic 
beams constituting a canonical example of a generic wave phenom-
enon16 first observed with light17.

This analogy was more recently extended to the inelastic inter-
action of light or electrons with matter; an example is provided in 
ref. 18. In particular, electron energy loss spectroscopy (EELS) and 
light extinction spectroscopy (LES) give extremely similar results 
when interacting with optical media19. Also, the spatial and spec-
tral variations in the electron energy loss intensity can be described 
using the nano-optical concept of electromagnetic local density 
of states (EMLDOS)20 and therefore gives access to bright as well 
as dark modes19–22. Nevertheless, EELS in an electron microscope 
is seriously hindered by its well-known inability to measure the 
polarization of photonic excitations, which is rooted in the scalar 
character of the Schrödinger equation. Now, the importance of 
polarization effects at the nanoscale is not to be demonstrated, and 
developing polarized EELS (pEELS) could potentially shine light 
on the sometimes controversial23 nanoscale polarization effects 
such as super-chirality24–26, namely, the local enhancement in cir-
cular dichroism beyond what is possible with a circularly polarized  
plane wave.

Recent advances have shown the potential of phase-shaped 
free electron beams to reproduce optical polarization in EELS 

experiments. Indeed, the visionary work of Asenjo-Garcia and 
García de Abajo pointed to the use of vortex beams to mimic 
circular polarization27. Later, Guzzinati et al.28 used π beams—
singular electron beams with a π-phase jump in the plane per-
pendicular to the electron propagation direction—to emulate an 
optical-polarization-dependent experiment in EELS. Although it is 
based on different physical assumptions29, the selection-rule-based 
approach developed in these works is essentially similar to that 
developed for describing dichroic signals in the so-called core-loss 
EELS30. All together, these pioneering works, as well as the phenom-
enological work of Ugarte and Ducati31 and the numerical investiga-
tion of Zanfrognini and collaborators32, gave important hints on the 
relation between the symmetry of free electron beams and optical 
polarization. Unfortunately, they did not relate the EELS probabili-
ties to any universal macroscopic or nanoscopic optical quantity. 
Additionally, it remained unclear what physical vectorial quantity 
for free electrons shall be used as an analogue to optical polarization.

In this Article, we rigorously define an optical polarization ana-
logue (OPA) for fast electrons as a vector equal to the transition 
dipole between two phase-shaped states. We then investigate the 
case where the beam waist of the electron beam, w0, is larger or com-
parable to the typical variation length of the probed nano-optical 
field L. Further, we demonstrate that the polarized EELS and the 
linear/circular optical extinction cross-sections can be directly con-
nected, provided that the incoming and outgoing electron states are 
properly defined. Particularly, we show the perfect analogy of the 
role of linear polarization dephasing upon wave propagation in the 
observation of circular dichroism in pEELS and LES. In the case 
of nanoscale electron beams (w0 ≪ L), we show that pEELS mea-
sures the EMLDOS polarized linearly or circularly in the direction 
perpendicular to the electron propagation axis. This result sharply 
contrasts with conventional EELS experiments that only access 
the component of the EMLDOS oriented along the beam propa-
gation axis. Additionally, we demonstrate that the circular dichro-
ism in pEELS is proportional to the local density of the spin of the 
nano-optical field.
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In the following, all the calculations make use of the quasi-static 
approximation for which we introduce the electrostatic potential 
propagator Wðr; r0;ωÞ

I
 at points r and r0 and angular frequency ω.  

We use a modal decomposition33,34 for performing simulations 
within the boundary element method35; Supplementary Section 10 
provides the relevant details. We describe the fast electron beam 
within the paraxial and non-recoil approximations36 where the 
wavefunction is ψðrÞ / ΨðRÞeiKzz

I
, Kz is the wavevector of the elec-

tron along its propagation axis z and r = (R, z). Therefore, the EELS 
probability related to a transition from the initial electron states 
ψi(r) and final electron states ψf(r) with an energy loss ℏω can be 
expressed as27,28,32,36

Γi;f ðωÞ ¼ 2e2
hv2 ∬ dr dr0 Im f�Wðr; r0;ωÞg
´Ψ 

f ðRÞΨ iðRÞΨ f ðR0ÞΨ 
i ðR0Þe�iqzðz�z0Þ

ð1Þ

where h is the Planck constant; qz = Kzf − Kzi = ω/v is the longitudinal 
momentum transfer; Kzf and Kzi denote the initial and final longitu-
dinal momentum of the electron, respectively; further, v ≈ c/2 is the 
electron speed in the transmission electron microscope, where c is 
the speed of light in a vacuum.

We compare the LES and pEELS techniques in Fig. 1. Evidently, 
pEELS requires measuring the transitions between the specific 
states to happen, as shown in Fig. 1a–d. Although transitions 
between arbitrary states are possible (also see Extended Data Fig. 1),  
we will consider—without loss of generality—that the incident 
beam Ψi is supposed to be an idealized vortex beam, that is, a 
Laguerre–Gauss LG±1;0Þ

� �

I
 (ref. 37) or a π beam (Hermite–Gauss 

state HG0∣1,1∣0) (ref. 28). Figure 1e shows the Poincaré sphere that 
describes all the possible polarization vectors u of light, from linear 
(u = ux∣y) to right-handed (R) or left-handed (L) circular polariza-
tion (uR/L = ux ∓ iuy). As shown in Fig. 1f, a similar representation 
exists with the Bloch spheres for the electron states, for example 
LG1,0 = (HG0,1 – iHG1,0)/

ffiffiffi
2

p
I

.
If the realization of an LES experiment is well known (Fig. 1g), 

the pEELS one is worth discussing (Fig. 1h). The initial states are 
typically created with holographic14,15, magnetic28 or programma-
ble38 phase plates. The final state Ψf should be assumed to be an 
LG0,0 (or equivalently an HG0,0) state. Sorting such final states would 
require a state sorter (Fig. 1h), which is still a subject of intense 
experimental research39,40. Therefore, the preferred realization is a 
very small spectrometer entrance aperture, that is, a plane wave Ψ0 
as the final state, which, however, shares the same symmetry with 
the LG0,0 and HG0,0 states. Using a plane wave as the final state trades 
off the signal-to-noise ratio with ease of use28. The typical entrance 
angle range must be smaller than the ratio between the energy loss 
(few electron volts) to the electron acceleration voltage (~100 kV), 
of the order of tens of microradians (see the quantitative evaluations 
provided in Supplementary Section 9); the case of metallic nanoan-
tenna is shown in Extended Data Fig. 2.

To understand the relation between optical and electron polar-
izations, one first needs to answer the question ‘how a scalar field 
(electron wavefunction) can measure and project a vectorial quan-
tity (electromagnetic field) along specific directions’?

For an LES experiment (Fig. 1g), the polarization effect directly 
follows from the fact that an external electromagnetic vectorial field, 
for example, an electrical field Eu (u is either x/y or R/L), interacts 
with another vectorial field, that is, the polarization density in the 
medium. In the electronic case, it seems really tempting to naively 
attribute the role of the external field to the transverse wavefunc-
tion Ψ. However, when drawing the analogy between the optical and 
electronic cases, we must keep in mind a fundamental difference. In 
optical experiments, the probing wave (light) is directly involved in 
the process, while in electronic experiments, it is inelastically scat-
tered via the exchange of a photon. Therefore, in the latter case, the 

symmetry of the transition—and not of the wave itself—has to be 
taken into account27,28. To quantitatively understand this point, we 
start by introducing the in-plane transition dipole di;f ¼ Ψ fh jd̂ Ψ ij i

I
 

between an initial and final state, where d̂ denotes the transverse 
transition dipole moment operator for the fast electron. Without 
any loss of generality, we then calculate it between any first-order 
Hermite–Laguerre–Gaussian (HLG) state of the Bloch sphere Ψ 
(Fig. 1f) to the plane wave Ψ0. The orthogonality relations of the 
HLG states gives (Supplementary Section 6.3)

Ψ 0h jd̂ Ψj i ¼ ew0

ffiffiffiffiffi
2π

p
u; ð2Þ

where w0 denotes the width of the electron beam and u denotes a 
unit vector (its relevance is discussed later). We now define the spa-
tially dependent OPA of direction u as

DuðRÞ ¼ Ψ 0h jd̂ Ψj if R0;w0
ðRÞ ð3Þ

where f R0;w0
ðRÞ ¼ expððR� R0Þ2=w2

0Þ=πw2
0

I
 is a Gaussian beam 

profile of width w0 and centre R0, the latter corresponding to the 
impact parameter of the electron beam. Finally, we introduce an 
effective transition current as
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Fig. 1 | comparison of polarized Les and polarized eeLs. a–d, Examples 
of four different transitions carrying a non-zero transition dipole moment. 
This includes transition from low-order HG (a,b) or LG (c) states to 
constant-phase states (zero-order HG or LG, or plane waves) or transitions 
between higher-order states (d). e,f, Relation between linear and circular 
polarizations (HG0∣1,1∣0 and LG± 1;0

I
) wavefunctions, respectively) is shown in 

e and the Poincaré sphere (Bloch sphere) is shown in f. g,h, Experimental 
setups of LES (g) and pEELS (h).

Nature PHysics | www.nature.com/naturephysics

http://www.nature.com/naturephysics


ArticlesNaTurE PHySIcS

juðrÞ ¼ DuðRÞ eiqzz: ð4Þ

It should be noted that this current has the form of an opti-
cal plane wave, where the wave vector qz = ω/v is the transferred 
momentum.

To get the EELS probability from equation (1), we apply the 
generic relations of the Hermite–Gauss functions (Supplementary 
Section 12) to the first-order HG states HG0∣1,1∣0. We show that for 
any function g(R), 

R
gðRÞHG1;0ðRÞ /

R
∂xgðRÞf R0;w0

ðRÞ
I

, while the 
HG0∣1 state gives a derivative along the y axis. We then introduce the 
electric field propagator G

$
ðr; r0;ωÞ
I

 related to Wðr; r0;ωÞ
I

 through 
4πω2G

$
ðr; r0;ωÞ ¼ ∇∇0Wðr; r0;ωÞ

I
. This permits to integrate by 

parts equation (1); further, by using the previous equations, we find 
the transition probability from any first-order HLG state to Ψ0 as

ΓuðR0;ωÞ ¼ 4q2z
_ ∬ dr dr0 Im f�juðrÞ:G

$
ðr; r0;ωÞ:juðr0Þg ð5Þ

Equation (5) is now a scalar product similarly to the optical 
case. Further, Du

I
 is an in-plane transition dipole moment that 

defines a polarization analogue for EELS, with u = di,f/∣di,f∣ is the 
direction of the in-plane transition dipole dif. Remarkably, in the 
case of a transition between Ψj i

I
 to Ψ 0j i

I
, u corresponds to the 

point of the Poincaré sphere (Fig. 1e) located at the same coor-
dinate as Ψ on the Bloch sphere, giving an intuitive mapping 
between both spheres. However, more generally, the transition 
between the initial and final state gives rise to the vectorial form 
of the electron polarization analogue. Therefore, for arbitrary 
transitions between HGn,m and HGn0;m0

I
 states, a less intuitive map-

ping should be made by respecting the selection rules n0 ¼ n± 1
I

 
or m0 ¼ m± 1

I
 (linear case) or with LGl,m and LG l0;m

I
l0 ¼ l ± 1
I

 (cir-
cular case) (Supplementary Section 8 and Extended Data Fig. 1), 
that is, in cases where the phase structure of the initial and final 
states has no obvious dipolar symmetry. We note that—within the 
non-recoil approximation—we have not made any assumption on 
the specific energy transferred to the target; therefore, the above 
description is perfectly valid for probing any solid-state excita-
tions, from phonons to core-loss excitation.

In the following, we will determine the optical observables 
measured with pEELS. We first consider the broad illumination 
limit (w0 ≳ L) in which light and electron beams can be compared, 
as shown in Fig. 1. The extinction cross-section for a plane wave 
polarized along the direction u has a well-known proportionality 
relation with the polarizability tensor α (Fig. 1g and Supplementary  
Section 4):

σuðωÞ ¼ 4πk2z∬ dR dR0 Im αuuðR;R0; kz;�kz;ωÞf g ð6Þ

where kz = ω/c is the wavevector of the electromagnetic plane wave 
propagating along z. This has to be compared with the electronic 
case, where the normalized pEELS probability Γu ¼ Γu

2πw2
0

I

 for a tran-
sition dipole Du

I
 can be deduced from equation (5) by noting that 

the integrations along z and z0
I
 correspond to two time-domain 

Fourier transforms (FTs) and reads

ΓuðR0;ωÞ ¼ 4e2
_ q2z ∬ dR dR0 f R0;w0

ðRÞ f R0;w0
ðR0Þ

Im �GuuðR;R0; qz;�qz;ωÞ
� � ð7Þ

Note that the polarizabilities and Green dyadics are simply con-
nected through a Dyson equation41, which reduces to a simple 
proportionality relation (in the sense of tensors) for a dipole in a 
vacuum.

The almost perfect resemblance between equations (6) and (7) 
shows that pEELS is the counterpart of the polarized optical extinc-
tion experiment, in the same vein as the correspondence between 
regular EELS and unpolarized extinction19. This is further exempli-
fied for the linear polarization case (Fig. 2a–c), where the Malus’ 
law for the dipolar mode of a silver nanoantenna is fully retrieved in 
both photonic and electronic cases (Fig. 2b,c), re-enforcing the anal-
ogy between the optical polarization vector and Du

I
. Nevertheless, 

contrary to the optical case, the pEELS probability depends on the 
precise positioning of the beam through its dependence upon R0.

Further, the photonic circular dichroic extinction is inter-
esting. Omitting the spatial and frequency dependencies for 
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Fig. 2 | comparison of linearly and circularly polarized Les and non-spatially resolved peeLs experiments on simple plasmonic nanostructures. a, Silver 
antenna sustaining a dipolar plasmon mode. b,c, Malus’ law measured on the antenna with light (b, LES) and electronic (c, pEELS) excitations. In this case, 
the electron beam is centred in the middle of the antenna. d, The simplest three-dimensional optically active plasmonic structure is built by combining two 
antennas similar to the one shown in a. These two antennas form an angle of 60° and are offset along z by a variable distance denoted as the gap. e,f, The 
activity increases with a decreasing gap, similar to optical (e) and electronic (f) measurements. R(L)HCP: Right-(left-)handed circular polarization. In this 
case, the electron beam is centred on the tips of the two antennas. g, Schematic showing the propagation of a plane wave of wavelength λp (purple line) 
and an effective electron transition current of wavelength λe (black line) along a BKS nanostructure.
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brevity, it is defined by Co ¼ σR � σL / ∬ dR dR0 Re αyx � αxy
� �

I
 

and the EELS one is defined as 
CeðR0;ωÞ ¼ ΓR � ΓL / ∬ dR dR0 Re Gxy � Gyx

� �
f ðRÞf ðR0Þ

I
 

(Supplementary Section 5.2). Clearly, Co
I

 and Ce
I

 are also analogues.
This is exemplified when comparing circularly polarized LES 

and EELS for the simplest chiral plasmonic structure, the so-called 
Born–Kuhn model system (BKS)42. The BKS is built from two 
antennas sustaining dipole resonances offset along the z direc-
tion and rotated with respect to each other (Fig. 2d). The gap and 
the angle set the effective dephasing between the two subsequent 
interactions between the probe and each antenna. Both optic and 
electronic situations are almost identical with (1) an increase in 
the dichroism visibility as the gap decreases and (2) an inversion of 
the dichroism when the sign of the gap flips—in perfect agreement 
with optical experiments reported in the literature43. The strong cir-
cular dichroic signals stem from the exact same physical ground. 
In both cases, the circular polarization vector can be decomposed 
as a sum of the linear polarization vectors. The linear polarization 
rotates upon propagation, exciting for the R polarization in phase 
(antiphase) with the two dipolar charge distributions of the bound-
ing (antibounding) mode (Fig. 2g). The only difference is the rota-
tion speed of the linear polarization, which is related to the light 
wavelength 2πc/ω and the wavelength 2πv/ω of the electromag-
netic field following the electrons. Since the electron speed can be 
changed at will, this makes EELS a fairly tunable tool for the investi-
gation of chiral structures, as already suggested for photon-induced 
near-field electron microscopy (PINEM)44.

We now turn to the focused illumination limit (w0 ≪ L) (Fig. 
3a,j,p). Using the fact that a Gaussian function of a vanishing waist 
tends to a Dirac distribution, we can directly re-express equation (7) 
(Supplementary Section 3.3 provides alternative demonstrations) 
and find a spatially resolved pEELS experiment between states i and 
f (Supplementary Section 5):

Γi;f
u ðR0;ωÞ ¼

2πq2z
_ω

jdi;f j2 ~ρuuðR0; qz;ωÞ ð8Þ

where ~ρuuðR0; qz;ωÞ
I

 denotes the FT (along z) u-polarized EMLDOS 
defined as20

ρuðr;ωÞ ¼ � 2ω
π

Im u  G
$
ðr; r;ωÞ  u

n o
ð9Þ

Therefore, pEELS is directly proportional to the FT along z of the 
EMLDOS polarized in a plane perpendicular to the electron beam 
axis, while regular EELS is related to the FT of the EMLDOS polar-
ized along the electron beam direction20. We emphasize that since u 
is any polarization of the Poincaré sphere, the latter equation extends 
the definition of the chiral EMLDOS described by Pham et al.45,46 
Remarkably, it is evident that equation (8) is extremely similar to 
the decay rate enhancement of a dipole placed in an electromag-
netic environment (Purcell effect47), with the electron-transition 
dipole moment playing the role of a probe dipole (Supplementary 
Section 6.4). Therefore, this demonstrates that the transverse free 
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I
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electron state behaves analogously to a two-state system interacting 
with a nano-optical field, where the interaction time is encoded in 
the z-FT.

To illustrate our findings, we simulated a spatially resolved pEELS 
experiment on the dipole mode of the same antenna as shown in Fig. 
2a. As shown in Fig. 3a, we computed the three-dimensional map of 
the magnitude ∣E∣ and transverse direction θxy ¼ arctanðjEyj=jExjÞ

I
 

of the plasmonic electric field. As expected, one can observe that the 
FT z EMLDOS (Fig. 3b) clearly reproduces the variations in the field 
magnitude (Fig. 3a), while the FT x and y EMLDOS (Fig. 3c,d) map 
the regions where the field is aligned along the x and y directions, 
respectively, as shown in blue and yellow in Fig. 3a. This simple cor-
respondence comes from the fact that the transverse direction of 
the electric field does not strongly vary as a function of z (Fig. 3a). 
We then simulated the pEELS maps for Ψ0 → Ψ0 (Du ¼ 0

I
), Ψx → Ψ0 

(Du ¼ Dx
I

) and Ψy → Ψ0 (Du ¼ Dy

I
) transitions, as shown in Fig. 

2f–h, respectively. One can observe an almost perfect agreement 
between the polarized EMLDOS and pEELS maps, which strongly 
supports our theoretical conclusions8. This result provides a clear 
and rigorous interpretation of the early local mapping of dipolar 
plasmons with a π beam28. Additionally, from two different linear 
pEELS measurements, one can reconstruct the local polarization of 
the optical fields (Fig. 3e,i), as otherwise measured by Krehl et al. 
with differential phase-contrast imaging48. Our technique, thus, 
constitutes the ideal tool to resolve polarization singularities at the 
nanoscale49,50.

Plugging equation (8) in Ce ¼ ΓR � ΓL
I

, one can also rigor-
ously define the spatially resolved dichroic pEELS probability 
(Supplementary Section 5.2) as

Ce ¼ 2πe2q2z
_ω

~ρRðR0; qz;ωÞ � ~ρLðR0; qz;ωÞ
� � ð10aÞ

¼ 4e2q2z
_

Re GxyðR0; qz;ωÞ � GyxðR0; qz;ωÞ
� � ð10bÞ

where the dependence on R0, ω and qz on the left-hand side has been 
omitted for brevity. This equation allows us to formally define the 
optical dichroism at the nanoscale as the measure of the local differ-
ence between the density of the right- and left-handed optical states. 
Additionally, in both equations (10a) and (10b), the definition of the 
z component of the spin operator of the electromagnetic field applied 
on a plane wave of frequency qz (refs. 23,51) can be expressed as

CeðR0; qz;ωÞ ¼ � 2πe2q2z
_2ω

SzðR0; qz;ωÞ ð11Þ

The latter equation shows that Ce
I

 measures the qz component of 
the optical spin density along the direction of propagation of the 
electron beam, which is itself proportional to the optical chirality 
flow52. To clearly illustrate the physics at play in this case, we numeri-
cally investigated the nano-optical dichroism of the BKS introduced 
in Fig. 2d with a fixed gap of 25 nm. In Fig. 3j,p, we show the maps 
of the magnitude and transverse direction of the plasmonic electric 
fields, respectively, associated with the bonding and antibonding 
modes (note that to facilitate visibility, the gap has been increased 
to 50 nm on these plots). Crucially, and as a signature of the chiral 
nature of the BKS, Fig. 3j,p shows that the transverse direction of the 
electric field rotates as a function of z, as the iso-direction regions 
form helices (as indicated in blue and yellow, respectively). The 
local spin density Sz(R0, qz, ω) is a direct measure of this property 
and quantifies the direction in which the electric fields rotates along 
z at R0 and for the spatial frequency qz. This is shown in Fig. 3k–n 
in the case of the bonding mode and Fig. 3q–t for the antibonding 
mode. Moreover, the perfect agreement observed between the maps 
of Ce

I
 and Sz corroborate our equations (10a), (10b) and (11).

To give a more intuitive understanding, one can apply 
a modal decomposition to the spin operator, that is, 

G
$
ðr; r0;ωÞ ¼ P

mgmðωÞEmðrÞ  Emðr0Þ
I

, where m is an integer 

indexing the optical modes of the nanostructure and gm is the 
so-called spectral response function (see Supplementary Section 7 
and ref. 34). Subsequently, we get Sz / Im fEm ´ E

mgz
I

, which corre-
sponds to the Minkowski formula for the spin of optical fields53,54; this 
clearly shows its connection with the local twist of the electric field.

Finally, we can emphasize that these results shine a new light 
onto the microscopic origin of the extrinsic dichroism and its mac-
roscopic expression. A nano-optical probe such as a phase-shaped 
electron beam measures the local difference between the right and left 
EMLDOS. A broad beam measures the spatially integrated difference 
between the left and right density of states. Consequently, a nanostruc-
ture can be optically inactive while having a non-zero density of spin 
(that is, the nano-optical field exhibits a local twist), as illustrated on 
the non-chiral aligned BKS nanostructure (Fig. 3o,u). Equation (9) 
can be interpreted as the Purcell effect for a chiral dipole probe (say, 
a molecule) placed at point R0 with the same transition dipole as the 
one of the transverse electron wavefunction. Therefore, chiral pEELS 
can directly probe the location of the enhanced emission of chiral mol-
ecules even in globally achiral structures.

We have shown that we can rigorously define an OPA for the free 
electron beam. This leads to the possibility of introducing polarized 
measurements in EELS. These are directly analogous to LES experi-
ments in the case of broad beam illuminations. Spatially resolved 
pEELS maps are a measurement of the polarized EMLDOSs, and the 
dichroic circular pEELS probabilities are directly related to the density 
of electromagnetic spins. In particular, this permits a comprehensive 
description of the local polarization of both bright and dark optical 
excitations, while the otherwise highly successful experiments involv-
ing polarization, e.g. cathodoluminescence55–57 or PINEM44,58, are 
restricted to the bright ones. We hope that the sound definition of the 
observables presented here will keep motivating the longstanding and 
challenging experimental developments required to experimentally 
observe pEELS. Remarkably, through the mapping between Bloch and 
Poincaré spheres, our work establishes a Jones formalism for electrons. 
Thus, through the consideration of partial OPA, the development of 
a full polarimetric56 pEELS is now at hand. This study concentrates 
on the quasi-static limit, where magneto-electric and spin-related59 
effects are not taken into account. Extension to the relativistic case 
has already been described for the circular pEELS of molecules27, but 
should be continued in a similar framework as the one developed 
here. Also, the formalism used here could be used as the basis to 
describe cathodoluminescence and PINEM experiments with phase- 
shaped electrons.
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Extended Data Fig. 1 | examples of transitions between higher order HG states possessing a non-zero OPa. Transitions a and b possess a dipole moment 
along the x direction and therefore measure Ex(ω, qz). Transitions c and d possess a dipole moment along the y direction and therefore measure Ey(ω, qz).
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Extended Data Fig. 2 | illustration of the effect of the summation over the final states. a, Wavefunction ψi and plasmonic potential ϕm of the four first 
modes m of a 100nm * 15nm silver nano-antenna. The relative position and scale of the wavefunction and potential are respected. Scales bar is 50 nm. b, 
pEELS spectrum as a function of the collection angle. The peaks of the four modes shown in a. are marked with arrows. Below θω, the second and fourth 
peak are suppressed due to the selection rule reminiscent of formula (184) of the SI. Above θω,all the peaks are present and the resulting spectrum is 
essentially classical.
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