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ABSTRACT

Electron–photon temporal correlations in electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) spectroscopies have
recently been used to measure the relative quantum efficiency of materials. This combined spectroscopy, named cathodoluminescence
excitation (CLE) spectroscopy, allows for the identification of excitation and decay channels, which are hidden in average measurements.
Here, we demonstrate that CLE can also be used to measure excitations’ decay time. In addition, the decay time as a function of the excitation
energy is measured, as the energy for each electron–photon pair is probed. We used two well-known insulating materials to characterize this
technique, nanodiamonds with NV0 defects and hexagonal boron nitride (h-BN) with 4.1 eV defects. Both also exhibit marked transition radi-
ations, whose extremely short decay times can be used to characterize the instrumental response function. It is found to be typically 2 ns, in
agreement with the expected limit of the EELS detector temporal resolution. The measured lifetimes of NV0 centers in diamond nanoparticles
(20–40 ns) and 4.1 eV defect in h-BN flakes (<2 ns) match those reported previously.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0165473

The specific pathway a system takes to return to its ground state
following an optical excitation reveals details about its internal elec-
tronic structure.1–5 A key quantity in this type of spectroscopy is the
excitation lifetime (the time for its decay). It is defined as the time, s,
by which a single excitation has probability 1=e of having decayed. In
typical time-dependent optical spectroscopy experiments, photons are
used as the excitation source, and the decay trace of the generated pho-
toluminescence provides a measurement of s. Electrons can also be
used for spectroscopy in the optical range.6–8 Among the available
techniques, the two mostly used in the optical range are electron
energy loss spectroscopy (EELS), which provides a local measurement
of optical extinction,7 and cathodoluminescence (CL), which is equiva-
lent to off-resonance photoluminescence9 and can also be used for life-
time measurements.10–14 Experiments with electrons have the added
benefit of high spatial resolution, down to the nanometer range,15 and
the possibility of exciting non-optical transitions due to the larger

momentum carried by electrons.6 Electron excitation is broadband in
energy, which can be a benefit, as easy excitation into the far ultra-
violet is possible, and a penalty, as the excitation energy cannot be con-
trolled. This penalty can be mitigated by temporal correlation experi-
ments in which the energy lost by each electron leading to a photon
emission is measured,16,17 a technique coined as cathodoluminescence
excitation (CLE) spectroscopy17 as a reference to its photonic counter-
part, photoluminescence excitation spectroscopy.

Concerning only electron spectroscopies, lifetimes have been
measured using essentially two methods. The first one uses pulsed elec-
tron sources.10 In these, the electron arrival time on the sample (excita-
tion time) is controlled by the electron emission time (triggered by a
laser18,19) or by a fast beam blanker.19,20 In short, the time delay
between a photon emission (CL) and the excitation event is measured,
constructing a decay trace.10 Lifetime measurements with pulsed elec-
tron beams are a more straightforward and efficient way of measuring
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excitation dynamics. However, this is depreciated by the technical bur-
den of using a pulsed electron gun, well illustrated by the fact that
time-resolved CL in a TEM has just recently been demonstrated.13,14

In the second method, light intensity interferometry using an Hanbury
Brown and Twiss interferometer21 is used in an electron microscope22

to measure the temporal width of photon bunches emitted by each
electron impact, which has been proven to be directly related to the
lifetime.23 CL light intensity interferometry has been applied to the
measurement of lifetimes at sub-20 nm spatial resolution11 and, in
conjunction with CL hyperspectral imaging, to measure the local exci-
tation and emission efficiencies.24,25 CLE appears as an interesting
extension of such approaches, as it could add to the ability to link
absorption, emission, and dynamics information.

Here, we show that temporal correlations between electron energy
loss (EELS) and photon emission (CL) events provide a measurement of
decay traces. We studied two materials: diamond and hexagonal boron
nitride (h-BN). To estimate the instrument response function (IRF), we
first focused on transition radiation (TR). TR photons are emitted when
a fast electron traverses a dielectric interfaces and it occurs at energies in
the gap of semiconductors. Its lifetime is known to be much smaller
than the measured 2ns IRF. The decay time of CL emission from NV0

centers in diamonds nanoparticles was measured to vary between 20
and 40ns, in agreement with previous measured values using light
intensity interferometry.26 Finally, the decay time of 4.1 eV defects in h-
BN were measured to be barely distinguishable to the IRF, in agreement
with previous reports.11,27

Experiments were performed on a VG HB501 STEM equipped
with a cold field emission electron source, an Attolight M€onch light
injection/collection system and an EELS spectrometer with an ASI
Cheetah direct electron detector, as in Fig. 1(a). This detector is based
on the Timepix3 detector from the Medipix3 consortium, which has
recently been used for temporally resolved EELS experi-
ments.16,17,28,29 The detector used has four chips, aligned in a 4 � 1
array with 4 � (256 � 256) pixels. In addition, its electronics is
equipped with two external time-to-digital-converters. Visible range
photons were detected using a photomultiplier tube (PMT H10682-
210 single photon counting head from Hamamatsu). The combina-
tion of these two time-resolved detectors allows the detection of the
time delay between electron scattering and photon detection events
as a function of electron energy [Fig. 1(b)], as described in detail later.
All data was processed using the following Python libraries: Numpy
1.23.5, Matplotlib 3.6.2, Scipy 1.10.0, Hyperspy 1.7.344. The raw data

FIG. 1. (a) Sketch of the experiment: an
electron microscope is used to produce a
1 nm-wide beam of 60 keV electrons. An
EELS spectrometer equipped with a mag-
netic prism measures the transmitted elec-
trons’ energy spectrum. A parabolic mirror
collects light generated by excitations’
decay and couples it to a PMT outside the
microscope vacuum using a single
3.06 0.1 m long multimode 600 lm-core
optical fiber. (b) 2D histograms, ðE;DtÞ,
for NV0 in diamond (above) and 4.1 eV
defects in h-BN (below). Because of the
shorter lifetimes for the 4.1 eV defects,
coincident electron–photon pairs are less
probable for longer time delays in compar-
ison to NV0 defects. (c) and (d) Annular
dark field images of diamond nanopar-
ticles and an h-BN flake, respectively, sup-
ported on an amorphous carbon
membrane. (e) and (f) Temporal traces
integrated for all energy losses, E, for a
diamond nanoparticle and an h-BN flake,
with their CL emission spectrum in the
inset. The solid lines are a two-
exponential curve model fitted to the data.
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processing code is available in Zenodo.45 Defects in two materials
were studied: NV0 in diamond and 4.1 eV defects in hexagonal boron
nitride (h-BN). In accordance to the emission energy of the corre-
sponding defects, for the diamond experiments, a long pass wave-
length filter at 532 nm was used, while for the h-BN a short pass
wavelength filter at 532 nm was used, unless otherwise noted. 60 keV
electrons were focused into a 1 nm-wide probe, which was raster
scanned on a sample cooled down to 150K. Electron scattering at
high angles (>80 mrad) allows for the formation of high angle annu-
lar dark field images, which have an intensity proportional to the pro-
jected atomic number, Z, and are used for further beam positioning
on areas of interest [Figs. 1(c) and 1(d)]. Electron beam convergence
and collection angles were 7.5 and 10 mrad. 75–150 nm-wide dia-
mond nanoparticles containing a large number (>100 NV0 centers)
were single crystals produced by proton irradiation of diamond
nanoparticles30 [Fig. 1(c)]. h-BN flakes were produced by a high pres-
sure and high temperature method31 and chemically exfoliated by
sonication in isopropyl alcohol [Fig. 1(d)]. The diamond nanopar-
ticles and the thin h-BN flakes were supported on thin amorphous
carbon membranes. The CL emission spectrum of these two samples
are shown in the insets of Figs. 1(e) and 1(f) and in the supplemen-
tary material, Fig. SI1. These emissions stem from NV0 in diamond
nanoparticles3 and the 4.1 eV defect in the h-BN flakes,4 respectively.
In addition to this, a broad emission due to TR occurs.32 In the dia-
mond nanoparticles, two other minor emissions are observed at 2.5
and 3.2 eV, which are cut by the 532 nm long pass filter (supplemen-
tary material, Fig. SI1). For the h-BN flakes, a tail to higher energies
was observed, which gives a background to the emission at 4.1 eV
(supplementary material, Fig. SI1).

Electrons were detected after a magnetic prism, which disperses
them along one direction as a function of their energy, with an energy
sampling between 0.050 and 1 eV per pixel on the detector. Therefore,
for each electron, its energy loss after scattering, E, and arrival time on
the detector, te, were measured. For photons, only their arrival time, t� ,
was stored. A search algorithm17 was used to locate temporally corre-
lated events, from which ðE;DtÞ 2D histograms were constructed, with
the time delay defined as Dt ¼ te � t� . In these histograms [Figs. 1(b),
2(a), and 2(c)], correlated events appear around zero time delay, while
uncorrelated events appear at longer time delays. These later occur due
to various noise sources (detector noise, external particles, such as cos-
mic rays and ambient photons) and detection losses. For example, if
the photon in an electron–photon pair is not detected (e.g., if it is emit-
ted away from the collection mirror), the electron which generated it
may appear as correlated with a photon from a later scattering event,
giving rise to spurious correlations.

An integral of the ðE;DtÞ 2D histograms for all energies results in
a temporal profile, which represent the rise and decay times of the
photon emission probability of an excitation created by an electron
inelastic scattering [Figs. 1(e), 1(f), and 2(b)–2(d)]. The time between
an electron inelastic event, when an excitation is created, and the first
emitted photons may not be zero, leading to a non-zero rise time. For
example, a high energy excited state might need to relax, before optical
transitions are possible. However, these processes are faster (<100 ps
scale) than our temporal resolution. Following the maximum of the
emission intensity, the probability of photon emission will decay, with
a typical timescale given by the excitation lifetime. The data presented
here was modeled by two exponential functions, from which rise and
decay times were extracted. Solid line curves in Figs. 1(e) and 1(f) are

FIG. 2. (a) and (c) ðE;DtÞ 2D histograms
between 1 and 60 eV for NV0 centers in a
diamond nanoparticle and 4.1 eV defects
in an h-BN flake. Colored vertical dashed
lines mark energy ranges where temporal
profiles are integrated. (b) and (d)
Temporal profiles extracted from (a) and
(c), with the time axis set so decay occurs
at positive times. The NV0 decay is con-
siderably longer than the system IRF. The
decay of the 4.1 eV defects is only margin-
ally longer than the IRF, shown in panel
(d) and in Fig. 1(f). A diamond nanoparti-
cle and an h-BN flake EELS spectra are
shown in the left insets of (b) and (d). The
corresponding relative quantum efficiency
curves are shown in the right insets.
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fits using this model. The instrument response function (IRF) is better
approximated by a Gaussian curve. However, a model with a Gaussian
and two exponential curves have too many free parameters and lead to
inconsistent fits. The rise and decay time constant for our IRF was
2 ns, which was estimated from the temporal profile of the transition
radiation (TR). TR photons are emitted when a fast electron traverses
dielectric interfaces and it occurs at energies in the gap of semiconduc-
tors. Its lifetime is known to be much smaller than the measured 2 ns
IRF33 [blue curves in Fig. 1(e) and 1(f)]. From the ðE;DtÞ 2D histo-
grams in Figs. 2(a) and 2(c), a CLE spectrum is calculated by summing
all electrons leading to photon emission, that is, a projection along the
time-delay axis [Figs. 2(b) and 2(d)]; total EELS spectrum is the sum
of all electrons scattered (at any time); and the relative quantum effi-
ciency (rel. QE17) is calculated by dividing the CLE spectrum by the
total EELS spectrum, and gives an insight into the preferential electron
energy losses responsible for photon emission.

As a function of electron energy loss [Figs. 2(a) and 4(a)], two
contributions for diamonds are observed: (i) between 2.0 and 5.0 eV,
a fast decay (white vertical lines); and (ii) between 6.5 and 440.0 eV, a
slower decay (orange vertical lines). The corresponding decay profiles
are shown in Figs. 2(b) and 4(b) (with the 2.0–5.0 eV decay curve in
blue, marked TR). The fast decay at low electron energy losses is
attributed to TR. The slow decay contribution is attributed to the
decay of NV0 centers [20 and 45ns for the orange profiles in Fig. 2
(c)]. In fact, for all energies above the bandgap of diamond
(� 5.5 eV), a similar decay trace is observed. For this reason, the
energy integrated temporal profile [Fig. 1(e)] has the same long
decay. This is expected, as the majority of the emission observed in
these diamonds stem from NV0 centers. For the h-BN, only fast
decays were observed [Figs. 2(c) and 4(c)].

Different decay times were observed for NV0 in diamond nano-
particles [between 20 and 40ns in Figs. 1(e) and 3(a)] and the 4.1 eV
defect in h-BN [2 ns in Fig. 1(f)]. The data presented in Fig. 3 include
18 NV0 and five 4.1 eV defects independent measurements. Similar
decay times were measured when including electron losses up to core-
hole excitations (Fig. 4).

The range of lifetimes measured for the NV0 matches the values
measured in CL experiments in the literature.11,26,34 A similar lifetime
range has also been reported in photoluminescence.35 The reduction
in lifetime, which implies an emission rate decrease, was linked to the
nanoparticle size, a direct consequence of the presence of an interface
close to the emitting dipole.36 A nanoparticle size dependence has also
been observed for NV0 lifetime measured by photoluminescence.37,38

For the 4.1 eV defect in h-BN, the measured decay time is barely dis-
tinguishable from the IRF of our experiment. However, one can see
that their decay traces are slightly longer than that of TR, consistent
with the convolution of two decay times of 2 and 1ns.

Similar decay traces of the NV0 centers and the 4.1 eV defects are
observed for losses up to 600 eV, which include core-electron excitation
for carbon, boron, and nitrogen for h-BN K edges [Figs. 4(a)–4(d)]. The
boron and nitrogen core-electron excitations are not markedly visible in
relative quantum efficiency curves (green in upper right inset), despite
being visible in the EELS and CLE spectra [Fig. 4(d) upper left insets].
The fine structure of the carbon K edge appears in the relative quantum
efficiency curve for NV0 centers in a diamond nanoparticle [Fig. 4(b)].
Compared to previously reported data,17 where no structure was detected
in the relative quantum efficiency at core loss edge energies, two

improvements were crucial: improved pixel-to-pixel temporal calibration
of the TPX3 detector (more details in Ref. 39) and increased signal-to-
noise ratio. The observation of a connection between core-electron exci-
tations and photon emission gives hope to the observation of light emis-
sion from individual atoms with atomic resolution. In short, core-
electron transitions can be mapped down to the atomic scale,40,41 if they
occur at sufficiently high energies. Rare earth atomsmight be good candi-
dates, given their atomically localized M absorption edges42 and photon
emission under electron excitation.

Shifts of the order of 1 or 2ns of the “zero” time delay exists,
which was defined as the peak of the temporal profile for the 2D histo-
gram integrated for all energies. This can be seen in detail in Fig. 4(d).
These changes are comparable to the temporal sampling and resolu-
tion of the current TPX3 implementation for EELS and probably arise
due to modal dispersion in the 3.06 0.1 m long, 600lm core, fiber.43

With a better temporal resolution and a monomode fiber or free-space
detection, one could first confirm if these shifts are physical. More
interestingly, with a substantially improved temporal resolution (tens
of ps) one could start to investigate the excitation dynamics of materi-
als under electron irradiation and also increase the spatial resolution of

FIG. 3. (a) and (b) Decay times as a function of energy bins for 18 NV0 and five 4.1
eV defects independent measurements; A small but statistically significant variation
of the NV0 decay as a function of excitation energy is observed. (b) is the same plot
as (a) with only the 4.1 eV defects in h-BN data. Some of the statistical error bars
are smaller than the plotted symbols.
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CL hyperspectral maps, as already demonstrated for CL using pulsed
electron sources.12

To conclude, a method for measuring excitation lifetimes is dem-
onstrated, with a current decay time resolution of around 2ns. For
optimal conditions, the IRF can be reduced to 1.6 ns. This is still a fac-
tor of 2 smaller than the optimal performance of Timepix3 detectors.
The reasons for this discrepancy is discussed in Ref. 39. In principle, a
spatial resolution as good as that of CL experiments15 is possible.17

This method can be implemented in electron microscopes equipped
with continuous electron sources, as described here, being compatible
with current technologies of electron monochromation.44 The current
temporal resolution is limited by the electron detector. Future
upgrades with faster electron detectors (e.g., the Timepix4 detector45)
will allows for experiments in the sub-nanosecond temporal scale.46,47

The supplementary material contains the CL spectrum of NV0

and h-BN with their full detection energy range.
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