Excitation lifetime extracted from electron–photon (EELS-CL) nanosecond-scale temporal coincidences

Nadezda Varkentina; Yves Auad; Steffi Y. Woo; Florian Castioni; Jean-Denis Blazit; Marcel Tencé; Huan-Cheng Chang; Jeson Chen; Kenji Watanabe; Takashi Taniguchi; Mathieu Kociak; Luiz H. G. Tizei

Appl. Phys. Lett. 123, 223502 (2023)
https://doi.org/10.1063/5.0165473
Excitation lifetime extracted from electron-photon (EELS-CL) nanosecond-scale temporal coincidences

Cite as: Appl. Phys. Lett. 123, 223502 (2023); doi: 10.1063/5.0165473
Submitted: 28 June 2023 · Accepted: 14 November 2023 · Published Online: 1 December 2023

Nadezda Varkentina,1 Yves Auad,1 Steffi Y. Woo,1 Florian Castioni,1 Jean-Denis Blazit,1 Marcel Tencé,1 Huan-Cheng Chang,2 Jeson Chen,2 Kenji Watanabe,1 Takashi Taniguchi,1 Mathieu Kociak,1 and Luiz H. G. Tizei1,a)

AFFILIATIONS
1Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
2Academia Sinica, Institute of Atomic and Molecular Sciences, Taipei, Taiwan
3Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
4Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
5Author to whom correspondence should be addressed: luiz.galvao-tizei@universite-paris-saclay.fr

ABSTRACT
Electron–photon temporal correlations in electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) spectroscopies have recently been used to measure the relative quantum efficiency of materials. This combined spectroscopy, named cathodoluminescence excitation (CLE) spectroscopy, allows for the identification of excitation and decay channels, which are hidden in average measurements. Here, we demonstrate that CLE can also be used to measure excitations’ decay time. In addition, the decay time as a function of the excitation energy is measured, as the energy for each electron–photon pair is probed. We used two well-known insulating materials to characterize this technique, nanodiamonds with NV0 defects and hexagonal boron nitride (h-BN) with 4.1 eV defects. Both also exhibit marked transition radiations, whose extremely short decay times can be used to characterize the instrumental response function. It is found to be typically 2 ns, in agreement with the expected limit of the EELS detector temporal resolution. The measured lifetimes of NV0 centers in diamond nanoparticles (20–40 ns) and 4.1 eV defect in h-BN flakes (<2 ns) match those reported previously.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0165473

The specific pathway a system takes to return to its ground state following an optical excitation reveals details about its internal electronic structure.1–3 A key quantity in this type of spectroscopy is the excitation lifetime (the time for its decay). It is defined as the time, τ, by which a single excitation has probability 1/e of having decayed. In typical time-dependent optical spectroscopy experiments, photons are used as the excitation source, and the decay trace of the generated photon luminescence provides a measurement of τ. Electrons can also be used for spectroscopy in the optical range.4–6 Among the available techniques, the two mostly used in the optical range are electron energy loss spectroscopy (EELS), which provides a local measurement of optical extinction,1 and cathodoluminescence (CL), which is equivalent to off-resonance photoluminescence7 and can also be used for lifetime measurements.8–13 Experiments with electrons have the added benefit of high spatial resolution, down to the nanometer range,15 and the possibility of exciting non-optical transitions due to the larger momentum carried by electrons.6 Electron excitation is broadband in energy, which can be a benefit, as easy excitation into the far ultraviolet is possible, and a penalty, as the excitation energy cannot be controlled. This penalty can be mitigated by temporal correlation experiments in which the energy lost by each electron leading to a photon emission is measured,14–15 a technique coined as cathodoluminescence excitation (CLE) spectroscopy1 as a reference to its photon counterpart, photoluminescence excitation spectroscopy.

Concerning only electron spectroscopies, lifetimes have been measured using essentially two methods. The first one uses pulsed electron sources.16 In these, the electron arrival time on the sample (excitation time) is controlled by the electron emission time (triggered by a laser17,18) or by a fast beam blanker.19,20 In short, the time delay between a photon emission (CL) and the excitation event is measured, constructing a decay trace.10 Lifetime measurements with pulsed electron beams are a more straightforward and efficient way of measuring...
excitation dynamics. However, this is depreciated by the technical burden of using a pulsed electron gun, well illustrated by the fact that time-resolved CL in a TEM has just recently been demonstrated.13,14 In the second method, light intensity interferometry using an Hanbury Brown and Twiss interferometer21 is used in an electron microscope22 to measure the temporal width of photon bunches emitted by each electron impact, which has been proven to be directly related to the lifetime.23 CL light intensity interferometry has been applied to the measurement of lifetimes at sub-20 nm spatial resolution17 and, in conjunction with CL hyperspectral imaging, to measure the local excitation and emission efficiencies.24,25 CLE appears as an interesting extension of such approaches, as it could add to the ability to link absorption, emission, and dynamics information.

Here, we show that temporal correlations between electron energy loss (EELS) and photon emission (CL) events provide a measure of decay traces. We studied two materials: diamond and hexagonal boron nitride (h-BN). To estimate the instrument response function (IRF), we first focused on transition radiation (TR). TR photons are emitted when a fast electron traverses a dielectric interfaces and it occurs at energies in the gap of semiconductors. Its lifetime is known to be much smaller than the measured 2 ns IRF. The decay time of CL emission from NV0 centers in diamonds nanoparticles was measured to vary between 20 and 40 ns, in agreement with previous measured values using light intensity interferometry.26 Finally, the decay time of 4.1 eV defects in h-BN were measured to be barely distinguishable to the IRF, in agreement with previous reports.11,27

Experiments were performed on a VG HB501 STEM equipped with a cold field emission electron source, an AttoLight Monch light injection/collection system and an EELS spectrometer with an ASI Cheetah direct electron detector, as in Fig. 1(a). This detector is based on the Timepix3 detector from the Medipix3 consortium, which has recently been used for temporally resolved EELS experiments.16,17,26,29 The detector used has four chips, aligned in a 4 \times 1 array with 4 \times (256 \times 256) pixels. In addition, its electronics is equipped with two external time-to-digital-converters. Visible range photons were detected using a photomultiplier tube (PMT H10682-210 single photon counting head from Hamamatsu). The combination of these two time-resolved detectors allows the detection of the time delay between electron scattering and photon detection events as a function of electron energy [Fig. 1(b)], as described in detail later. All data was processed using the following Python libraries: Numpy 1.23.5, Matplotlib 3.6.2, Scipy 1.10.0, Hyperspy 1.7.344. The raw data...
In addition to this, a broad emission due to TR occurs. In the diamond nanoparticles, h-BN flakes were produced by a high pressure and high temperature method and chemically exfoliated by sonication in isopropyl alcohol. These emissions stem from NV\(^0\) in diamond nanoparticles and the thin h-BN flakes were supported on thin amorphous carbon membranes. The CL emission spectrum of these two samples are shown in the insets of Figs. 1(c) and 1(d). Electron beam convergence and collection angles were 7.5 and 10 mrad. 75–150 nm-wide diamond nanoparticles containing a large number (>100 NV\(^0\) centers) were single crystals produced by proton irradiation of diamond nanoparticles\(^0\) [Fig. 1(c)]. h-BN flakes were produced by high pressure and high temperature method and chemically exfoliated by sonication in isopropyl alcohol [Fig. 1(d)]. In the diamond nanoparticles and the thin h-BN flakes, a tail to higher energies was observed, which gives a background to the emission at 4.1 eV (supplementary material, Fig. SI1).

Electrons were detected after a magnetic prism, which disperses them along one direction as a function of their energy, with an energy sampling between 0.050 and 1 eV per pixel on the detector. Therefore, for each electron, its energy loss after scattering, \(E_t\), and arrival time on the detector, \(t_t\), were measured. For photons, only their arrival time, \(t_p\), was stored. A search algorithm was used to locate temporally correlated events, from which \((E, \Delta t)\) 2D histograms were constructed, with the time delay defined as \(\Delta t = t_t - t_p\). In these histograms [Figs. 1(b), 2(a), and 2(c)], correlated events appear around zero time delay, while uncorrelated events appear at longer time delays. These later occur due to various noise sources (detector noise, external particles, such as cosmic rays and ambient photons) and detection losses. For example, if the photon in an electron–photon pair is not detected (e.g., if it is emitted away from the collection mirror), the electron which generated it may appear as correlated with a photon from a later scattering event, giving rise to spurious correlations.

An integral of the \((E, \Delta t)\) 2D histograms for all energies results in a temporal profile, which represent the rise and decay times of the photon emission probability of an excitation created by an electron inelastic scattering [Figs. 1(e), 1(f), and 2(b)–2(d)]. The time between an electron inelastic event, when an excitation is created, and the first emitted photons may not be zero, leading to a non-zero rise time. For example, a high energy excited state might need to relax, before optical transitions are possible. However, these processes are faster (<100 ps scale) than our temporal resolution. Following the maximum of the emission intensity, the probability of photon emission will decay, with a typical timescale given by the excitation lifetime. The data presented here was modeled by two exponential functions, from which rise and decay times were extracted. Solid line curves in Figs. 1(e) and 1(f) are

![Graphs showing time delay and energy loss](image)
fits using this model. The instrument response function (IRF) is better approximated by a Gaussian curve. However, a model with a Gaussian and two exponential curves have too many free parameters and lead to inconsistent fits. The rise and decay time constant for our IRF was 2 ns, which was estimated from the temporal profile of the transition radiation (TR). TR photons are emitted when a fast electron traverses dielectric interfaces and it occurs at energies in the gap of semiconductors. Its lifetime is known to be much smaller than the measured 2 ns IRF, [blue curves in Fig. 1(e) and 1(f)]. From the (E, Δt) 2D histograms in Figs. 2(a) and 2(c), a CLE spectrum is calculated by summing all electrons leading to photon emission, that is, a projection along the time-delay axis [Figs. 2(b) and 2(d)]; total EELS spectrum is the sum of all electrons scattered (at any time); and the relative quantum efficiency (rel. QE) is calculated by dividing the CLE spectrum by the total EELS spectrum, and gives an insight into the preferential electron energy losses responsible for photon emission.

As a function of electron energy loss [Figs. 2(a) and 4(a)], two contributions for diamonds are observed: (i) between 2.0 and 5.0 eV, a fast decay (white vertical lines); and (ii) between 6.5 and 440.0 eV, a slower decay (orange vertical lines). The corresponding decay profiles are shown in Figs. 2(b) and 4(b) (with the 2.0–5.0 eV decay curve in blue, marked TR). The fast decay at low electron energy losses is attributed to TR. The slow decay contribution is attributed to the decay of NV0 centers [20 and 45 ns for the orange profiles in Fig. 2(c)]. In fact, for all energies above the bandgap of diamond (≈5.5 eV), a similar decay trace is observed. For this reason, the energy integrated temporal profile [Fig. 1(e)] has the same long decay. This is expected, as the majority of the emission observed in these diamonds stem from NV0 centers. For the h-BN, only fast decays were observed [Figs. 2(c) and 4(c)].

Different decay times were observed for NV0 in diamond nanoparticles [between 20 and 40 ns in Figs. 1(e) and 3(a)] and the 4.1 eV defect in h-BN [2 ns in Fig. 1(f)]. The data presented in Fig. 3 include 18 NV0 and five 4.1 eV defects independent measurements. Similar decay times were measured when including electron losses up to core-hole excitations (Fig. 4).

The range of lifetimes measured for the NV0 matches the values measured in CL experiments in the literature.49,50,51 A similar lifetime range has also been reported in photoluminescence.52 The reduction in lifetime, which implies an emission rate decrease, was linked to the nanoparticle size, a direct consequence of the presence of an interface close to the emitting dipole.53 A nanoparticle size dependence has also been observed for NV0 lifetime measured by photoluminescence.54,55 For the 4.1 eV defect in h-BN, the measured decay time is barely distinguishable from the IRF of our experiment. However, one can see that their decay traces are slightly longer than that of TR, consistent with the convolution of two decay times of 2 and 1 ns.

Similar decay traces of the NV0 centers and the 4.1 eV defects are observed for losses up to 600 eV, which include core-electron excitation for carbon, boron, and nitrogen for h-BN K edges [Figs. 4(a)–4(d)]. The boron and nitrogen core-electron excitations are not markedly visible in relative quantum efficiency curves (green in upper right inset), despite being visible in the EELS and CLE spectra [Fig. 4(d) upper left inset]. The fine structure of the carbon K edge appears in the relative quantum efficiency curve for NV0 centers in a diamond nanoparticle [Fig. 4(b)]. Compared to previously reported data,11 where no structure was detected in the relative quantum efficiency at core loss edge energies, two improvements were crucial: improved pixel-to-pixel temporal calibration of the TPX3 detector (more details in Ref. 39) and increased signal-to-noise ratio. The observation of a connection between core-electron excitations and photon emission gives hope to the observation of light emission from individual atoms with atomic resolution. In short, core-electron transitions can be mapped down to the atomic scale,40,41 if they occur at sufficiently high energies. Rare earth atoms might be good candidates, given their atomically localized M absorption edges56 and photon emission under electron excitation.

Shifts of the order of 1 or 2 ns of the “zero” time delay exists, which was defined as the peak of the temporal profile for the 2D histogram integrated for all energies. This can be seen in detail in Fig. 4(d). These changes are comparable to the temporal sampling and resolution of the current TPX3 implementation for EELS and probably arise due to modal dispersion in the 3.0 ± 0.1 m long, 600 μm core, fiber.42 With a better temporal resolution and a monomode fiber or free-space detection, one could first confirm if these shifts are physical. More interestingly, with a substantially improved temporal resolution (tens of ps) one could start to investigate the excitation dynamics of materials under electron irradiation and also increase the spatial resolution of...
CL hyperspectral maps, as already demonstrated for CL using pulsed electron sources. To conclude, a method for measuring excitation lifetimes is demonstrated, with a current decay time resolution of around 2 ns. For optimal conditions, the IRF can be reduced to 1.6 ns. This is still a factor of 2 smaller than the optimal performance of Timepix3 detectors. The reasons for this discrepancy is discussed in Ref. 39. In principle, a spatial resolution as good as that of CL experiments is possible.15 This method can be implemented in electron microscopes equipped with continuous electron sources, as described here, being compatible with current technologies of electron monochromation.17 The current temporal resolution is limited by the electron detector. Future upgrades with faster electron detectors (e.g., the Timepix4 detector) will allow for experiments in the sub-nanosecond temporal scale.36,47

The supplementary material contains the CL spectrum of NV0 and h-BN with their full detection energy range.

AUTHOR DECLARATIONS

Conflict of Interest

M.K. patented and licensed technologies at the basis of the Attolight Mönch used in this study and is a part-time consultant at Attolight. All other authors declare that they have no competing interest.

Author Contributions

Nadezda Varkentina: Data curation (equal); Formal analysis (equal); Investigation (equal); Validation (equal); Visualization (equal). Yves Auad: Data curation (equal); Formal analysis (equal); Investigation (equal); Software (equal); Validation (equal); Visualization (equal); Writing – review & editing (equal). Steffi Y. Woo: Data curation (equal); Investigation (equal); Resources (equal); Writing – review & editing (equal). Florian Castioni: Data curation (equal); Investigation (equal); Software (equal); Writing – review & editing (equal). Jean-Denis Blazit: Resources (equal). Marcel Tence: Investigation (equal); Methodology (equal); Resources (equal); Software (equal). Huan-Cheng Chang: Resources (equal). Jeson Chen: Resources (equal). Kenji Watanabe: Resources (equal). Takashi Taniguchi: Resources (equal). Mathieu Kociak: Conceptualization (equal); Data curation (equal); Funding acquisition (equal); Investigation (equal); Methodology (equal); Project administration (equal); Resources (equal); Software (equal); Supervision (equal); Validation (equal); Writing – review & editing (equal). Luiz H. G. Tizei: Conceptualization (lead); Data curation (lead); Formal analysis (equal); Funding acquisition (lead); Investigation (lead); Methodology (lead); Project administration (lead); Resources (lead); Software (equal); Supervision (lead); Validation (lead); Writing – original draft (lead); Writing – review & editing (lead).
DATA AVAILABILITY

The data that support the findings of this study are openly available in Zenodo at https://doi.org/10.5281/zenodo.8090907, Ref. 48.

REFERENCES