
M1 General Physics, University Paris-Saclay 2021-2022

Quantum Solid State Physics

QSSP

Book of Exercises

By

Philippe Mendels, Victor Baledent and Marcello Civelli

Laboratoire de Physique des Solides



2

Useful constants :

Planck’s constant ~ = 1.0546⇥ 10�34 J s
Boltzmann’s constant kB = 1.3806⇥ 10�23 J/K or kB = 8.6173⇥ 10�5 eV /K
free electron mass m = 9.1094⇥ 10�31 Kg
electron charge e = 1.601⇥ 10�19 C
permeability in free space µ0 = 4⇡ ⇥ 10�7 m T/A
Bohr magneton µB = 9.274009⇥ 10�24A m2

Avogadro’s number NA = 6.0221409⇥ 1023

Learn them by heart !
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The basic model of metals:

The free electron gas

Fermi Surface of the free electron gas in 3D. From http://www.quora.com/What-is-the-
relationship-between-boundary-of-the-first-Brillouin-zone-and-the-Fermi-surface-of-a-metal
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1.1 The free electron gas in 2D

Let’s consider an electron gas in two dimensions (2DEG). This system
is for example realized at the interface between two semiconductors or
two insulating oxides, like the SrTiO3/LaAlO3 heterostructure displayed
in the right-hand-side figure (from http://oxide.engr.wisc.edu/research-
alloxide2deg.htm). Other remarkable examples of 2DEG are layered ma-
terials (e.g. high temperature copper-oxide superconductors), which are
formed by stacking weakly coupled 2D layers.

Here we consider free electrons, i.e. we neglect the periodic potential due
to the crystal lattice and the electron-electron Coulomb repulsion. The
electron energy-momentum relation is then given simply by " = ~2k2/2m.

1.1.1 Fermi energy and density of states

1. Electrons are fermions obeying the Fermi-Dirac statistics. Write
down the Fermi-Dirac distribution function fFD(✏, T, µ) and sketch
it schematically for T = 0 and T > 0. For T = 0 draw in the
momentum space (kx, ky) the region occupied by the electrons, the
Fermi sphere (i.e. a Fermi disk in 2D). Identify the Fermi surface (i.e. a Fermi line in
2D) and the Fermi energy ✏F .

2. The electrons live on a 2D square of dimension Lx ⇥ Ly. Assuming periodic boundary
conditions, also known as Born Von Karman conditions (BVK), write down the quanti-
zation conditions on the wave-vector ~k.

3. In the limit Lx >> ax Ly >> ay, where ax and ay are typical interatomic distances (this
is usually called the bulk limit), the wave-vector ~k can be considered as a continuous
variable. Infer in this case the the density of states g(~k) in the ~k space.

4. Show that in 2D in the energy space, g(") is a constant g0 depending only on ~ and on
the free-electron mass m.

5. Express the total number of electrons Ne as an integral formula, involving g(") and the
Fermi distribution function fFD(✏, T, µ). Determine then the relation between the Fermi
energy ✏F [which is the chemical potential at zero temperature ✏F = µ(T = 0)] and g0 at
T = 0. Find also the relation between the corresponding Fermi vector kF , Ne, ~ and m.

6. As mentioned above, the high-temperature copper-oxide superconductors can be de-
scribed as layered materials. Each 2D layer is a square lattice of copper atoms (with an
oxygen atom placed between the coppers on each side of the squares, see figure 4.4). The
side of each square is a = 0.384 nm and there are 0.2 electron per square. Calculate the
surface density of electrons in each layer. By considering then just one layer, estimate
✏F , kF and the Fermi temperature TF (✏F = kBTF ). Can we consider the electron gas at
room temperature as a gas of classical particles?

7. Use again the integral formula relating Ne, g(") and fFD(✏, T, µ), but this time for T 6= 0.
For this 2D system, show that the chemical potential µ(T ) is very weakly dependent on
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temperature in the limit ✏F � kBT . This is true even in three dimensions (even if the
correction is larger in 3D than in 2D, it remains small enough). Explain why for any
practical purpose we can consider that µ(T ) ' ✏F 8T .

1.1.2 The specific heat

Figure 1.1: T�dependence of the specific heat over temperature C/T for the layered super-
conductor (ET )2Cu(NCS)2 (Tc = 10K). In the inset, C/T is displayed as a function of T 2

upon the application of 10 Tesla magnetic field which destroys superconductivity. Reference:
J. Müller et al., Physical Review B, vol. 65, p.140509 (2002)

The specific heat at constant volume is defined by

Cv =
@"e
@T

����
V

,

where "e is the total energy and V the total volume of the crystal.

1. Write down an integral formula relating "e(µ, T ), g(") and fFD(✏, T, µ).

2. The temperature dependence of "e(µ, T ) derives from the Fermi-Dirac distribution func-
tion fFD(✏, T, µ). This latter is a discontinuous function at T = 0, therefore its integration
at low temperatures requires some attention. We shall use a development introduced by
Sommerfeld (1927):

Z +1

0

d✏h(✏)fFD(✏, T, µ) = H(µ) +
⇡2

6
(kBT )

2h0(µ),
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where H is the primitive of the h function such that H(0) = 0 and h0 is the derivative of
h. By using this expression show that at low temperatures

Cel =
⇡2

3
k2
B
g(✏F )T =

⇡2

3
kBNe

T

TF

= �T,

Remember that the T�dependence of the µ(T ) is in practice negligible.

3. There is also a contribution to the specific heat due to the lattice vibrations (phonons).
At low temperatures, within the Debye model, this contribution is proportional to T 3

whenever T ⌧ TDebye: Cph = �T 3. Deduce the form of C/T as a function of T 2 adding the
electronic and phononic contributions and explain how we could determine the coefficients
� and �. Let’s assume that the lattice parameter a and electron-density given in question
1.1.1.6 are applicable for the material whose specific heat is displayed in figure 1.1. One
mole of this material contains 6 ⇥ 1023 electrons. Show that the value of � extracted
from the figure has the right order of magnitude as compared to the predictions of the
free electron gas. Which information may the actual � give us on the physical properties
of the electrons in the material, which are not predicted by the free electron gas model?

1.2 The Rashba effect:

The spontaneous spin-splitting of the energy in a 2D electron gas

The Rashba effect (first proposed in 19591), is the basis of the spin-effect transistor and of
spintronics, i.e. the spin-based electronics. This effect, historically known in compounds with
large spin-orbit coupling, has come back on the scene in recent years thanks to advances in the
making and control of surface and interfaces, where a 2D electron gas can be confined. The
electronic potential asymmetry in the direction perpendicular to the surface/interface can in
fact induce a relevant spin-Rashba coupling.

1.2.1 Confinement effect on the spin-orbit coupling of a 2D electron

gas

As spin plays a key role, it is first of all convenient to write down explicitly the spin part of
the free electron wavefunction by using a spinor (a two-component vector) notation:

 k(r) = (Ãeik·r + B̃e�ik·r)

✓
�"
�#

◆
,

where �" and �# are respectively the spin up and down components. The scalar in front of the
spinor is the usual free electron wavefunction, which here represents only the orbital part.
We shall focus on a 2D electron gas, which is for example realized at the surface of a solid.
Differently from the case of the bulk solid described as an infinite crystal, in order to describe a
surface, one should impose surface boundary conditions to the electron Schrödinger equation.
This produces new electronic surface states. For sake of convenience, here we shall not calculate

1E. I. Rashba and V. I. Sheka, Fiz. Tverd. Tela - Collected Papers (Leningrad), v.II, 162-176 (1959)
(in Russian), English translation: Supplemental Material to the paper by G. Bihlmayer, O. Rader, and
R. Winkler, Focus on the Rashba effect, New J. Phys. 17, 050202 (2015), http://iopscience.iop.org/1367-
2630/17/5/050202/media/njp050202_suppdata.pdf.
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explicitly these surface states. Rather, we shall assume that the surface states are well described
by a free electron gas, (with electrons having mass m) confined within a layer of width d from
the surface by an infinite potential along the z direction (perpendicular to the surface):

V (z) = 0 for 0 < z < d

V (z) = 1 everywhere else

1. Show that the eigenstates of an electron subjected to V (z) can be written as:

 kk,n(r) = A sin(
n⇡z

d
)eikk·rk

✓
�"
�#

◆
, (1.1)

where rk = (x, y), kk = (kx, ky), n = 1, 2, 3, · · · , and A is a normalization constant (which
we won’t calculate.)

2. Calculate the associated eigenvalues, which we shall call En(kk). We call sub-bands the
electronic bands labeled by the index n.

3. Let’s call n2D the electronic surface density. Calculate the limiting density n?

2D for which
only the sub-band of lowest energy is filled. In the following we shall always consider
n2D < n?

2D. In this case, the electron system confined by the potential can be effectively
assimilated to a real 2D electron gas (2DEG).

4. Naive derivation of the Rashba Hamiltonian
We shall now further simplify the modeling of the 2DEG, by considering a simpler con-
fining potential. This will allow us to simplify the calculation without loosing the salient
physical aspects of the problem. The formation of 2DEG at the solid surface can in
fact be described by the presence of an effective electric field along z, which mimics the
confining potential. Under this point of view, the Rashba effect derives by the inversion
symmetry breaking along the z direction produced by an effective electric field. Let’s
then consider then a constant electric field z, E = E0ẑ, producing the linear potential:

VE(z) = �E0z (1.2)

In the reference frame of an electron moving with velocity v in the 2D plane, the constant
electric field is perceived as an effective magnetic field B = �(v ^ E)/c2, where c is the
speed of light. This magnetic field then couples with the spin magnetic moment of the
electron itself µs = �gµB�/2, where g is the Landé factor of the electron (g = 2), µB

is the Bohr magneton and � = (�x, �y, �z) is a vector whose components are the Pauli
matrices2, acting on the spinor part of the electron wavefunction. Show that this spin-B
(spin-Rashba) coupling gives a new term in the electron Hamiltonian:

HR = ↵(� ^ k) · ẑ, (1.3)

where ↵ = g~µBE0/(2mc2) is called Rashba coupling constant. As the electric field points
in the z direction, the Rashba Hamiltonian can be re-written as:

HR = ↵(ky�x � kx�y). (1.4)

2�x =

✓
0 1
1 0

◆
,�y =

✓
0 �ı
ı 0

◆
,�z =

✓
1 0
0 �1

◆
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5. In the following we shall assume ↵ > 0. Then the full Hamiltonian of an electron in the
2DEG with wave-vector kk can be written as:

HR =
~2kk

2

2m

✓
1 0
0 1

◆
+ ↵(ky�x � kx�y). (1.5)

The Rashba term lifts the spin degeneracy in the sub-bands of the 2DEG, producing
two bands ✏±(k). Diagonalize the Hamiltonian 1.5, calculate the dispersions ✏±(k) and
sketch them along a given direction in the kk plane.

6. Determine as a function of ↵, m and ~ the wavevector kkm, where a ring of minima
of ✏�(k) is obtained in the kk plane. Determine then as a function of kkm the critical
electron density nc

2D (“the quantum density”) for which the lowest energy branches of
✏±(k) are completely filled. For n2D < nc

2D electrons occupy only the lower branches,
while for n2D > nc

2D electrons occupy both lower and upper band branches. Sketch the
Fermi surfaces (lines in 2D in the k plane) for the two cases n2D < nc

2D and n2D > nc

2D,
shading the electron occupied regions.

7. From the form of the Rashba coupling in the Hamiltonian 1.5, it is clear that the spin
quantum number is not conserved. The ✏±(k) have therefore both the spin up and the
spin down character. By imagining to start from the spin degenerate bands ↵ = 0,
activate the Rashba coupling ↵ 6= 0. Can you guess the spin character on different ✏±(k)
branches? Can you mark the spin orientation on the Fermi surface? For this latter case
it is better to think to the Rashba interaction in terms of the coupling between B and
µs.

8. Numerical application:
The figure 1.2 in the bottom shows the Rashba splitting measured in the band dispersion
of Au(111) by Angle Resolved Photo-Emission Spectroscopy. Let’s take from this kkm ⇠
0.012. Estimate the quantum density and a value of the Rashba coupling ↵ (in eV·m).
Show that you cannot account for the quantitative value 110 meV of the splitting between
the lower and upper bands obtained at the k+

F
of the upper band. A rough estimation

is sufficient. You may consider the electron mass of Au(111) equal to the free electron
mass mc2 = 0.511 ⇥ 106 eV and ~ c = 0.197 ⇥ 10�6 eV·m. Have you any idea why our
modeling does not work quantitatively in this case3?

1.2.2 Hand-waving approach to the Rahba coupling:

Symmetry effects on the electronic energies in a solid

Let’s consider electrons with wavevector k and spin up (") or down (#) living in a three
dimensional solid. We shall consider the effects of two fundamental symmetries on the electron
energies E(|k, "i) and E(|k, #i). In the following questions you are asked to give qualitative
answers without a demonstration.

3Hint: You may read the following research articles about this open problem and see if you have an
understanding of the quantitative mismatch of the band slitting found above:
G. Bihlmayer et al., Surface Science 600, 3888 (2006).
M. Nagano et al., J. Phys.: Condens. Matter 21, 064239 (2009).
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Figure 1.2: Band splitting in Au(111) due to Rahsba spin-orbit coupling

1. When the time-reversal symmetry (TRS) is respected, the system Hamiltonian is invari-
ant under all transformation of physical quantities which depend on the time-reversal,
like for example the momentum or the velocity of the electrons.

(a) How does the electron state |k, "i change under a time-reversal transformation?
(Hint: by analogy, consider the spin as the magnetic moment created by a small
current loop).

(b) Let’s consider the electrons in the solid as a free electron gas. If TRS is respected,
how does the energy of the state |k, "i changes under a time-reversal transformation?
Write this down explicitly.

2. In the majority of materials, the crystal lattice obeys to the inversion symmetry (IS).
In this case the system Hamiltonian is invariant under the coordinate transformation
r ! �r.

(a) Write down how the state |k, "i changes under the r inversion.

(b) In the case of a free electron gas, if IS is respected, how does the energy of the state
|k, "i changes under a time-reversal transformation? Write this down explicitly.
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3. Show now that in a system where TRS and IS are respected the electronic states must
be spin degenerate.

4. In order to lift the spin degeneracy then, at least one between the TRS and IS should
be broken. For convenience sake, let’s consider again the energy-momentum (dispersion)
relation of the free electron gas (for which all k directions are equivalent).

(a) Choose for example the kz direction and sketch the dispersion relations E(|k, "i)
and E(|k, #i) in the cases (i) the TRS and IS are respected, (ii) only the TRS is
broken and (iii) only the IS is broken. Mark the spin character on the bands that
you draw.

(b) For the three cases i,ii,iii) considered above, draw the Fermi-energy cuts in the
kz � ky plane. In the case when only the IS is broken, could you say what is the
spin orientation on these Fermi lines ?

(c) Give a practical example on how we could break the TRS.

(d) The IS is in fact broken in materials known to be non-centro-symmetric. In this
case a spin splitting of the bands is observed, and this phenomenon is known as
the Dresselhaus effect. Show that for any real material, even for a material which
is centro-symmetric, the IS is actually broken. In which part of the material could
this take place? This is the second well-known case of IS breaking, known as Rashba
effect.

1.3 Pauli Paramagnetism in the 3D electron gas

We consider a free electron gas of density n in three dimensions (3D). We want to study
the magnetic properties at zero temperature (T = 0 K) originating from the spins of the
electrons. We shall denote n" and n# the density of electrons respectively with spin " and
# along the quantization axis Oz. We shall call g(k) = g"(k,B = 0) + g#(k,B = 0) and
g(✏) = g"(✏,B = 0) + g#(✏,B = 0) the density of states (per unit volume), in the momentum
and energy spaces respectively, of the unpolarized gas (for B = 0 T, we have n" = n# = n

2 ).
We assume BVK conditions.

1. Under an external magnetic field B directed along the Oz direction, an electron of spin
S = ±1/2 gains an extra energy �mzB, where mz = �gµBSz is the projection along
Oz of the electron magnetic moment associated with the spin, g = 2 is the Landé
factor and µB is the Bohr magneton. Write down the new electron energies ✏k," and ✏k,#
of the electrons with spin " and # respectively upon application of B. Calculate the
corresponding density of states (per unit volume) g" et g#, first in the momentum space
and then in the energy space. We consider here only the effect of B on the electron spin
and neglect its effect on the momentum (orbital effects).

2. Write down the integral expression of n" and n# as a function of g"(✏,B) and g#(✏,B)
respectively. Remember that T = 0 K. Think well how to fix the integration boundaries
for the two spin species (because of the applied field we expect one of the two spin species
to be favoured with respect to the other). Do not try to solve explicitely the integrals.
Rather, infer an integral expression of �n = n# � n" as a function of g(✏), the total
density of states (per unit volume) of the unpolarized gas (realized when B = 0 T).
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3. Compare the magnetic energy acquired by an electron under a magnetic field �mzB
with the typical magnitude of the Fermi energy. Infer an approximate expression of
�n by using a first order Taylor expansion in the magnetic energy (again do not try to
solve explicitely the integral). From this latter, calculate then the magnetization Mz and
finally the magnetic susceptibility � = µ0Mz/B as a function of µB and the density of
states at the Fermi level g(✏F ) = 3n/2✏F . This magnetic susceptibility is known as Pauli
susceptibility. A more involved calculation can show that the Pauli susceptibility weakly
depends on temperature. The expression obtained here is however correct in the T = 0
limit.

4. In the case of sodium, the electron density is n = 2.68⇥ 1028 m�3 and the Fermi energy
✏F = 3.24 eV. Calculate for this case the T = 0 value of the magnetic susceptibility and
compare it with the value that can be extracted from Fig. 1.3, where we display the ratio
1
4⇡

�

⇢
for various metals. Here ⇢ is the material density (⇢ = 0.971 g.cm�3 for sodium).

Figure 1.3: Magnetic susceptibility of various metals as a function of temperature
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1.4 The free electron gas from 3D to 2D

1.4.1 Electron gas in 3D

We consider a free electron gas in 3D of density n3D, occupying a volume ⌦ = L2 ⇥ l. We
impose periodic boundary conditions (B.V.K.) in the three spatial directions x, y, z.

1. Write down the expression for the wavefunction  ~k
(x, y, z) and give the quantization rules

applied on the momentum vector ~k, specifying the values allowed (positive, negative or
zero) for each component of ~k.

2. Draw a scheme in the momentum space of the occupied states at T = 0. Mark on the
scheme the Fermi vector ~kF .

3. Write down the density of states g3D(~k) in momentum space and show that in the energy
space g3D(✏) = A

p
✏. Calculate the exact expression of A.

4. By writing the integral expression relating n3D and g3D(✏) at T = 0, find the relation
between n3D and the Fermi energy ✏F .

5. Calculate ✏F (in eV) and ~kF for the case of copper, n3D = 8⇥ 1028 m�3.

1.4.2 Electron surface energy of a nearly 2D plate

Figure 1.4: Plate scheme

1. Let’s first consider a free electron gas of density n2D uniformly distributed on a 2D sur-
face. Consider the density of states g2D(✏) in the energy space and evaluate the average
energy per electron as a function of ✏F at T = 0.

2. We shall now consider the effects of the surfaces on the electron gas living in a thin plate
of thickness l, lying the x�y plane perpendicularly to the Oz axis (see Fig. 1.4). To this
purpose we apply periodic boundary conditions only on the x and y directions and close
boundaries along the z direction. In this case the electron wave-function must go to zero
at the surfaces:  (x, y, 0) =  (x, y, l) = 0. A suitable form of the electron wave-function
is:

 (x, y, z) = Beikxx eikyy sin(kzz)

What are the quantization conditions on kx, ky and kz? Explain why the occupied states
in the momentum space at T = 0 form now a hemisphere. Which hemisphere should one
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consider, the one with a north pole or the one with the south pole? Why the base at
kz = 0 is now unoccupied? The electrons that originally lived on the kz = 0 base, where
have they gone?

3. Show that the new density of states in the momentum space g03D(~k) is twice as much the
the density of states g3D(~k) of the 3D system with periodic boundary conditions in all the
three spatial directions. Explain why the Fermi momentum kF is in practice unchanged.

4. For electrons living on the kz = 0 base of the hemisphere the average energy per particle
is the one of a 2D electron gas with periodic boundary conditions (see the question 1
above). Evaluate the average gain in energy per electron �✏ when the kz = 0 base is
emptied by the creation of the plate surfaces. This gain of energy is required to go from
the 3D electron system to a nearly 2D electron plate system, i.e. it is the energy required
to create the surfaces.

5. We can assimilate the density of states of the kz = 0 empty disk to that of a 2D electron
gas occupying a L2 surface. By using then the momentum-space density of states g2D(~k)
of the 2D electron gas, evaluate the number of electrons that at T = 0 migrate from the
base of the hemisphere, when the plate surfaces are formed. These electrons acquire an
average extra energy �✏.

6. Infer the total gain of energy �E, then the surface energy �E/L2, which we shall write
as ✏F ⇥ f(kF ), where f is a function of kF to be determined. Verify the units of your
formula. Evaluate this energy for copper in J/m2 units.

1.4.3 Surface effects on the electron gas

Figure 1.5: n(z) close to the plate surface

Generally, the local density of electrons in a metal can be written as

n(x, y, z) =

Z

|~k|<kF

| (x, y, z)|2 g(~k) dkxdkykz

1. Show that for periodic boundary conditions in 3D the density n0 is homogeneous. Give
its value as function of kF .
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2. By treating rigorously a nearly 2D plate geometry (see Fig.1.4), we find

n(z) = n0

✓
1� 3

sin(2kF z)� 2kF z cos(2kF z)

(2kF z)3

◆

Find the distance at which n(z) = n0 for the first time starting from z = 0 (extract this
from Fig.1.5), and compare it to the inter-atomic distance. What conclusion can you
draw about the surface effects on the electron gas in a material, like a thin plate?



2
Transport phenomena

Figure 2.1: Electronic band structure of graphene, from the review article of J. N. Fuchs:
https://arxiv.org/abs/1306.0380
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2.1 Electrical conductivity of a metal

Figure 2.2: Resistivity of a sodium sample as a function of temperature. From D.K.C. Mac-
Donald et K. Mendelssohn, Proc. Roy. Soc. A, vol. 202, p.523 (1950)

We shall study the temperature dependence of the electrical conductivity in a standard metal.
To this purpose, we consider the Boltzmann theory of gases, which is able to well describe
the electronic transport in the semiclassical regime. Within this framework the electrical
conductivity can be written as:

� = e2⌧

Z
d" g(")

v2

d

✓
�df 0(")

d"

◆
(2.1)

where d is the spatial dimension.

1. Starting from equation (2.1), show that in the low temperature limit � = e2⌧ g("F )
v
2
F
d

.

2. In the d = 2 case, rewrite g(") as a function of the electron density ne and the Fermi
energy "F . Derive the Drude conductivity formula (though we perform a calculation in
2D, this result remains valid in any dimension).

3. The parameter which most depends on temperature is the collision time ⌧ . At very
low temperatures ⌧ is nearly temperature independent because the scattering process is
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dominated by impurities. At higher temperature the dominant scattering is due to lattice
vibrations. Then, according to the number of excited vibrational modes, ⌧ / T�5 for
T ⌧ ✓D and ⌧ / T�1 for T � ✓D, where ✓D is a characteristic temperature of phonons
(for Na ✓D=158 K). According to you, can the Drude formula and the temperature
dependence of ⌧ account for the behavior of the resistance of sodium displayed in Fig.
2.2? Explain your reasoning.

2.1.1 Electrical conductivity of graphene

Graphene is a 2D sheet of carbon atoms forming a honeycomb lattice (see Fig. 3.3), displaying
a variety of extraordinary properties. For example it is about 207 times stronger than steel,
it is nearly transparent (this is usually a property of insulators, can you say why?), but con-
ducts heat and electricity efficiently (differently from insulators). The electronic structure of
graphene displays “Dirac cones” (see Fig. 2.1) with the Fermi level located at the vertex of
the cones. This structure is halfway between the one of a metal and the one of an insulator
(where the Fermi level is located in the middle of a gap), conveying graphene unusual transport
properties.
Let’s then consider the following parametrization of the electronic band structure of graphene
close to the the Fermi level:

"+(~k) = "F + ~vF k, si " > "F

"�(~k) = "F � ~vF k, si " < "F (2.2)

where vF ⇡ 106 m.s�1 is the Fermi velocity and k = ||~k|| is the norm of the wavevector
~k = (kx, ky).

• Calculate the density of states g(") and show that it is proportional to |"� "F | (we shall
call S = L2 the total surface of the system).

• Calculate the temperature dependence of the conductivity within the framework of Boltz-
mann theory and compare it to the one of a standard metal. We can neglect the tempera-
ture dependence of the chemical potential. You may first prove that at finite temperature

�df 0(")

d"
=

�

4ch2
⇣

�("�"F )
2

⌘ .

and use the following relation:
1Z

0

dx
x

ch2x
= ln 2.
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2.2 Thermal conductivity

Figure 2.3: Metallic bar subjected to a temperature gradient: T2 > T1.

Upon the application of a gradient of temperature to a metal, electrons which are free to move
set up a heat flow. We shall calculate here the thermal conductivity originating from this
electronic contribution to the thermal current using a simplified approach, the Drude model.
A more realistic calculation would imply to use Boltzmann transport theory, however this
would be much more involving.
Within the Drude model, thermal exchange is ensured by the collisions that electrons experi-
ence with the lattice of ions. We shall introduce a time parameter ⌧ , indicating the averaged
time between two subsequent collisions. For convenience’s sake, we consider a thin metallic
bar long L and of section S, such that S << L2 (see Fig. 2.3). Here we suppose that the
bar is isolated, so that there is no electrical current circulating. Upon application of a tem-
perature gradient ~rT along the x�axis direction (T2 > T1), a thermal current ~jQ sets in the
in the opposite direction. In the limit of weak temperature gradient (linear response limit)
this phenomenon is well described by the Fourier law ~jQ = �~rT , where  is the thermal
conductivity.

1. Write down the root mean square velocity v of an electron in 1D as a function of tem-
perature. The Drude approach assumes that electrons are classical particles.

2. Evaluate the change of energy of an electron with velocity v within the time interval [t, t+
⌧ ] between two collisions, as a function of v, ⌧ , the specific heat c and the temperature
gradient rxT .

3. Given the total electron density n, evaluate the number of electrons n+(n�) moving from
the left(right) hand side to the right(left) hand one, crossing the section S during a time
interval ⌧ .

4. Evaluate the heat Q = S ⌧ ~jQ.~x crossing the section S in a time ⌧ . Deduce then the
heat-current density ~jQ and the thermal conductivity 1D in this 1D case.

5. Let’s now consider a 3D system and suppose that the velocity distribution is homogeneous
in space. Show that the thermal conductivity in 3D can be written as  = 1

3v
2⌧cv =

1
3vlecv

where cv is the molar specific heat and le is the mean free path.
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6. Calculate the Wiedemann-Franz ratio between the thermal conductivity  and the elec-
trical Drude conductivity � = ne

2
⌧

m



�
=

3

2

✓
kB
e

◆2

T = LT (2.3)

L is called the Lorentz number.

7. Evaluate L for copper: at T = 0 °C, � = 6.45 ⇥107⌦�1m�1 and  = 385 W m�1 K�1.
Is this value comparable to the one obtained within the Drude calculation above?

8. Actually it is know that the Drude model is too crude to explain many important proper-
ties of the electron gas, which are in reality quantum particles. The Drude approach for
instance underestimates the electron velocity of a factor 100. However it also overesti-
mates of a factor 100 the specific heat, so that the order of magnitude of the Wiedemann-
Franz ratio calculated within the Drude approach is roughly correct. We will do a more
precise estimation now. Using a Boltzmann approach one obtains the same result as the
Drude calculation but the electron velocity v is replaced with the Fermi velocity vF . At
the same time (see section 1) the specific heat of an electron gas is cv = ⇡

2

2 nekB
T

TF
where

ne is the electron density an TF the Fermi temperature. Show that the Wiedemann-Franz
law is now written as:



�
=
⇡2

3

✓
kB
e

◆2

T = LT (2.4)

and compare this improved theoretical calculation with the experimental value of copper
calculated in question 7 above.


