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1 The free electron gas

1.1 The free electron gas in 2D
1.1.1 Fermi energy and density of states

1. The Fermi-Dirac distribution is fFD(ε, µ, T ) =
1

e
ε−µ
kBT + 1

=
1

eβ(ε−µ) + 1

The Shrödinger equation for free electrons reads :
~P̂ 2

2m
Ψ = εΨ thus eignenvalue is

ε =
~2k2

2m
(1)

Figure 1 –

2. In a 2D square of dimension Lx and Ly along ~ux et ~uy respectively, electrons wavevectors take the form
~k = nx

2π

Lx
~ux + ny

2π

Ly
~uy with nx and ny integers. This comes from the fact that both wavefunction and

its derivative is null at the borders of the box.

Figure 2 –

3. To calculate the density of state in the k space, 2 steps :
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• Determine the surface occupied by 1 state in the k-space : Sk =
2π

Lx

2π

Ly
=

(2π)2

S
with S the surface

of the box in the real space (S=LxLy).
• Write the number of electron states in this volume : g2D(k)Sk = 2↑↓ due to spin degeneracy. Then

g2D(k) =
S

2π2

4. To calculate the density of state in energy space, the previous 2 steps determination of g2D(k) is required.
We then write :

g2D(ε)dε = g2D(k)d2k (2)

We can write d2k = 2πkdk since the k-space filling is isotropic (sphere) in k space : ε =
~2k2

2m
. Using

dε

dk
=

~2k

m
we can deduce :

g2D(ε) = g2D(k)2πk
dk

dε

=
S

2π2
2πk

m

~2k

=
mS

π~2

= g0

(3)

5. Total number of electron can be calculated by summing over all energies the product of density of
electron state (number of state available at one energy : g2D(ε)) with the probability of occupying this
state (defined by Fermi-Dirac distribution) :

Ne =

∫ ∞
0

g2D(ε)fFD(ε, µ, T )dε

=
T=0

∫ εF

0

g2D(ε)dε

=
T=0

g0εF

(4)

using 1, we can write : kF =

√
2π
Ne
S

6. S = a2, Ne=0.2, ~=1.05 10−34, me=9.1 10−31, kB=1.38 10−23J.K−1 and 1J=6.2 1018eV

• ne = Ne
S =1.36 1018m−2

• kF =
√

2πNeS =2.9 109m−2

• εF =
~2k2f
2me

=0.3eV
• TF = εF

kB
=3780 K

The energy to add one electron is much higher than the thermal energy (TF»300K) so this cannot
be considered as a classical Boltzman gas.
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7. For T6=0 :

Ne =

∫ ∞
0

g2D(ε)fFD(ε, µ, T )dε

= g0

∫ ∞
0

1

e
ε−µ
kBT + 1

dε

=
x=β(ε−µ)

g0

β

∫ ∞
−βµ

dx

ex + 1

=
g0

β

∫ ∞
−βµ

exdx

1 + e−x

=
g0

β

[
ln(1 + e−x)

]∞
−βµ

=
g0

β
ln(1 + eβµ)

=
g0

β
ln(eβµ(e−βµ + 1))

= µg0 +
g0

β
ln(1 + e−βµ)

=
εF≈µ>>β−1

µg0 + g0kBTe
−βµ

(5)

The hypothesis that εF ≈ µ is reasonnable as it is exactly equal at T=0. Let’s see how µ changes as
function of temperature :

µ =
Ne
g0
− kBTe−

εF
kBT

=
eq.4

εF (1− kBT

εF
e
− εF
kBT

(6)

Since εF
kBT

>10, the temperature correction (second term) is less than 0.001%. We then can confirm that
the chemical potential µ varies very slowly with the temperature and can be approximated to Fermi
energy εF . This is convenient for all the calculation using the Fermi-Dirac equation.

1.1.2 The specific heat

1. The total energy can be written as the sum over all energies of : i) the number of electrons states at
given energy, ii) the energy of these electrons and iii) the probability of occupying this state (defined
by Fermi-Dirac distribution) :

εe =

∫ ∞
0

g2D(ε)fFD(ε, µ, T )εdε (7)

2. Identifying h(ε) = ε then h′(ε) =
dh(ε)

dε
= 1 and H(ε) =

∫ ε

0

h(ε′)dε′ =
ε2

2
, we can apply Sommerfeld

development to eq. 7 :

εe = g0
εF
2

+ g0
π2

6
(kBT )2 (8)

Using eq. 8, we can derive the specific heat :

Cv =
dεe
dT

=
Neπ

2

3εF
k2
BT

=
Neπ

2

3
kB

T

TF
= γT

(9)

3. Summing both electronic and phononic contribution to the specific heat we get : Cv = Ce
−

v + Cphv =

γT + δT 3. Plotting
CV
T

= γ+βT 2 as function of T 2 sould get a straight line with a slope corresponding
to β and the y-intercept corresponding to γ.
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γ =
Neπ

2

3
kB

1

TF
. With a Fermi temperature around TF=3800 K (see 1.1.1.6), we get γtheo=7mJ.mol−1.K−1.

γexp=23mJ.mol−1.K−1. This is the good order of magnitude. The factor 3 may be ascribed to the hea-
vier effective mass of electron. The notion of effective mass of electron will be further discussed in the
tight binding model.

1.2 The Rashba effect
1.2.1 Confinement effect on the spin-orbit coupling of a 2D electron gas

Figure 3 –

1. Hamiltonian is H =
p2

2m
. The general solution is of the form : Ψ(~r, ~σ) = [A1e

i~k.~r + A2e
−i~k.~r] without

considering the spin. With the boundaries conditions and decomposing ~k = ~k‖ + ~k⊥ :

Ψ(z = 0) = 0 ⇒ A1e
i~k‖.~r‖ +A2e

−i~k‖.~r‖ = 0

Ψ(z = d) = 0 ⇒ A1e
i~k‖.~r‖ekzd +A2e

−i~k‖.~r‖]e−kzd = 0

⇒ −A2e
−i~k‖.~r‖ekzd +A2e

−i~k‖.~r‖]e−kzd = 0

⇒ −A2e
−i~k‖.~r‖2isin(kzd) = 0

⇒ kzd = nπ, n ∈ Z

(10)

Then
Ψ(z) = Asin(

nπ

d
)e−i

~k‖.~r‖

[
β↑
β↓

]
(11)

2. Solving the Schrödinger equation :HΨn =
p2

2m
Ψn gives :

εn =
~2

2m

[
k‖ +

(nπ
d

)2
]

(12)

3. First we need to calculate the 2D density of state in the k space :

• Determine the surface occupied by 1 state in the k-space : Sk =
2π

Lx

2π

Ly
=

(2π)2

S
with S the surface

of the box in the real space (S=LxLy).
• Write the number of electron states in this volume : g2D(k)Sk = 2↑↓ due to spin degeneracy. Then

g2D(k) =
S

2π2

• n2D =
1

S

∫ kF

0

g2D(k)d2k =
k2
F

2π

Only the first band (n=1) is filled if εn=1(k‖ = kF ) < εn=0(k = 0) ⇒ kF <
π

d
⇒ n2D <

π

2d2

4



Figure 4 –

4. Hamitonian writes :
H = −~µ. ~B

= −gµB ~S.
~v × ~E

c2

=
gµB
c2

~S.(
~~k
m∗
× ~uz)

=
gµB~
m∗c2

~S.(~k × ~uz)

=
gµB~
m∗c2

(~S × ~k).~uz

=
gµB~
2m∗c2

(~σ × ~k).~uz

= α(~σ × ~k).~uz

(13)

5. The Hamiltonian car be written in a matrix form :

H =
~2k2
‖

2m∗

[
1 0
0 1

]
+ ασxky − ασykx =

[ ~2k2‖
2m∗ α(ky + ikx)

α(ky − ikx)
~2k2‖
2m∗

]
(14)

det(H− λI) = 0

⇒

(
~2k2
‖

2m∗
− ε

)2

− α2(ky + ikx)(ky − ikx)

⇒ ε± =
~2k2
‖

2m∗
± αk‖

(15)

The 1D dispersion along k and the 3D dispersion along a 2D plane are plotted in Fig. 5.

6. ε− has a minimum when
∂ε−
∂k‖

= 0 ⇒
~2k‖m

m∗
= α ⇒ k‖m =

m∗α

~2

Only the lower energy branch ε− is filled when ε−(kmax) = 0 ⇒ kmax =
2αm∗

~2
. We can deduce the

density of state for this branch from question 3 : n2D±(k) = 1
2n2D(k) since only 1 electron per state is

allowed when spin degeneracy is lifted. Thus nc2D(kmax) =
k2
max

4π
.

7. Mixing up and down spins, with the linear kx and ky dependence induce a rotation of the spin direction
in the (x,y) plane, as represented in Fig. 6.

8. k‖m = 0.012Å−1. Using expression from question 6 : α =
~2k‖m

m∗
=1.8 10−11eV.m.

∆ε(kF ) = ε+(kF )− ε−(kF ) = αkF=27meV with kF=0.15Å−1.Recheck the numbers...
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Figure 5 –

Figure 6 –
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1.2.2 Hand-waving approach to the Rashba coupling : Symmetry effects on the electronic
energies in a solid

Let’s recall that ~k is related to the momentum and thus velocity, and thus the time derivative of the
position. Thus if we reverse time, t → −t, then k → −k. For spin, if we consider it as a loop current, then
↑→↓. For inversion, x→ −x, then k → −k, but does not change the spin ↑→↑

1. (a) T |~k, ↑>= | − ~k, ↓>
(b) If TRS is respected then [H, T ]=0 :

• HT |~k, ↑>= H| − ~k, ↓>= ε−~k,↓| − ~k, ↓>

• T H|~k, ↑>= T ε~k,↑|~k, ↑>= ε~k,↑| − ~k, ↓>

Thus ε~k,↑ = ε−~k,↓

2. (a) I|~k, ↑>= | − ~k, ↑>
(b) If IS is respected then [H, I]=0 :

• HI|~k, ↑>= H| − ~k, ↑>= ε−~k,↑| − ~k, ↑>

• IH|~k, ↑>= Iε~k,↑|~k, ↑>= ε~k,↑| − ~k, ↑>

Thus ε~k,↑ = ε−~k,↑
3. If both TRS and IS are respected then : ε~k,↑ = ε−~k,↓ = ε~k,↓ : there is spin degeneracy.
4. See Fig. 7

Figure 7 –

1.3 Pauli Paramagnetism in the 3D electron gas

1. The Shrödinger equation for free electrons in presence of magnetic field can be written : H = ~P̂ 2

2me
−~µB.

Eigenfunction of free electron are also eigenfunction of this Hamiltonian, then only eigenvalue changes.
Writing the spin magnetic moment ~µ = −gµB ~S (and the projection µz = −gµB ~Sz), and ~B = B~uz we
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can see that :

ε↑ =
~2k2

2me
+ µBB

ε↓ =
~2k2

2me
− µBB

(16)

• Determine the volume occupied by 1 state in the k-space : Vk = 2π
Lx

2π
Ly

2π
Lz

= (2π)3

Ω with Ω the surface
of the box in the real space (Ω=LxLyLz).

• Write the number of electron states in this volume : g↑(k)Vk = 1↑. Then g↑(k) = Ω
(2π)3

• g↑(ε)dε = g↑(k)d3k. With d3k = 4πk2dk, eq. 16 and k =
√

2m
~2

√
ε↑ − µBB

Thus

g↑(ε) =
V

4π2

(
2m

~2

) 3
2 √

ε↑ − µBB

=
1

2
g↑↓(ε− µBB)

g↓(ε) =
V

4π2

(
2m

~2

) 3
2 √

ε↓ + µBB

=
1

2
g↑↓(ε+ µBB)

(17)

with g↑↓(ε) the density for B=0.
2. .

n↑ =

∫ ∞
−∞

g↑(ε)fFD(ε)dε

=
T=0

∫ εF

µBB

g↑(ε)dε

=
1

2

∫ εF−µBB

0

g↑↓(ε)dε

n↓ =

∫ ∞
−∞

g↓(ε)fFD(ε)dε

=
T=0

∫ εF

−µBB
g↓(ε)dε

=
1

2

∫ εF+µBB

0

g↑↓(ε)dε

(18)

∆n = (n↓ − n↑)

=
1

2

∫ εF+µBB

εF−µBB
g↑↓(ε)dε

(19)

3. µB=0.06meV.T−1, and typical magnetic field B=10T. Then µBB≈1meV « εF ≈5eV). Then we can
considerate the density of state constant near the Fermi level : g↑↓(ε) ≈ g↑↓(εF ) :

∆n = g↑↓(εF )µBB
M = µB∆n

= g↑↓(εF )µ2
BB

χ =
∂M

∂H

= µ0
∂M

∂B
= µ0g↑↓(εF )µ2

B

= µ0µ
2
B

3

2

n

εF

(20)

Since for 3d free electrons :
n =

∫ εF

0

g↑↓(ε)dε

= (
2m

~2
) 3 2 1

3π2
ε

3
2

F

=
2

3
εF g↑↓(εF )

(21)
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4. For Na : ne=2.68 1028m−3, εF=3.24eV and ρ=0.971 g.cm−3

~=1.05 10−34, me=9.1 10−31, µ0 = 4π 10−7m.T.A−1 and 1J=6.2 1018eV
χ=8.4 10−6

χ
4πρ=6.67 10−6cm3.g−1 in agreement with the Fig 1.3 of the tutorial.

1.4 The free electron gas from 3D to 2D
1.4.1 Electron gas in 3D

1. Ψk(x, y, z) = e−i
~k.~r. In a 3D box of dimension Lx, Ly and Lz, electrons wavevectors take the form

~k = nx
2π
Lx
~ux + ny

2π
Ly
~uy + nz

2π
Lz
~uz with nx, ny and nz ∈ Z

2. See Fig. 8.

Figure 8 –

3. The volume occupied by 1 state in the k-space : Vk = 2π
Lx

2π
Ly

2π
Lz

= (2π)3

Ω with Ω the surface of the box in
the real space (Ω=LxLyLz).
The number of electron states in this volume : g3D(k)Vk = 2↑↓ due to spin degeneracy. Then g3D(k) =

Ω
4π3

g3D(ε)dε = g3D(k)d3k. With d3k = 4πk2dk, k =
√

2m
~2

√
ε and ∂ε

∂k = ~2k
m , we have : g3D(ε) = 1

π2

(
2m
~2

) 3
2
√
ε

4. n3D =
∫ kF

0
g3D(k)d3k =

∫ kF
0

Ω
4π3 4πk2dk =

Ωk3F
2π2

n3D =
∫ εF

0
g3D(ε)dε =

∫ εF
0

1
π2

(
2m
~2

) 3
2
√
εdε = 2

3π2

(
2m
~2

) 3
2 ε

3
2

F

5. εF =
(

3π2

2

) 2
3 ~2

2m ≈7eV

1.4.2 Electron surface energy of a nearly 2D plate

1. DOS : g2D(ε) =
mS

π~2
= g0

Total energy at T=0 : Ee =

∫ infty

0

εg2D(ε)fFD(ε, µ, T )dε =
1

2
g0ε

2
F

Number of electrons at T=0 : Ne =

∫ infty

0

g2D(ε)fFD(ε, µ, T )dε = g0εF

Average energy per electron at T=0 :< Ee >=
Ee
Ne

=
1

2
εF

2. sin(kz0) = sin(kzl) = 0 ⇒ kz = n
π

l
. Here n>0 : since sin(−kzz) = −sin(kzz) : kz and −kz describe

the same state ! So we are restricted to only half a sphere in reciprocal space. Which hemisphere we
choose is nor relevant. At the base : kz = 0⇒ Ψ(kz = 0) = 0 The electron at the base occupy now the
next available state at the Fermi level.
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3. Volume occupied by 1 state : Vk =
2π

Lx

2π

Ly

π

l
=

4π3

Sl

Number of electron occupying this state : g3D(k)′Vk = 2↑↓ ⇒ g3D(k)′ =
V

2π3
= 2g3D(k).

Since the DOS is multiplied by two, but we divide the sphere in 2 to have only hemisphere available, the
two factors 2 compensate one another : the fermi vector do not change (you can make the calculation
of kF and k′F to convince yourself by calculating the number of electron in both cases Ne).

4. ∆ε = εF− < Ee >=
1

2
εF

5. Number of electron at kz = 0 : N2D

∫ kF

0

g2D(k)2πkdk =
S

2π
k2
F =

S

π

m

~2
εF

6. ∆E = N2D∆ε
∆E

S
=

1

2π
k2
F

1

2
εF = f(kF )εk with f(k) =

1

4π
k2
F

1.4.3 Surface effects on the electron gas

1. Born Von Karman conditions implies : Ψ =
1√
V
ei
~k.~r

n(x, y, z) =
1

V

∫
k<kF

g(k)4πk2dk =
1

V

∫
k<kF

V

4π3
4πk2dk =

k3
F

3π2
= n0

2. n(z) = n0 when 2kF z = 4.5⇒ z =
2.25

kF
≈ 2Å. The surface effects disappear for few layers deep.

2 Transport phenomena

2.1 Electrical conductivity of a metal
1.

σ = e2τ

∫ −∞
−∞

g(ε)
v(ε)2

d

(
−∂fFD(ε)

∂ε

)
dε (22)

∂fFD(ε)

∂ε
= −β eβ(ε−µ)

(eβ(ε−µ) + 1)2
(23)

The result is plotted in Fig. 9. As we can see,
∂fFD(ε)

∂ε
=
T=0

δ(ε− εF ). Then we can write :

Figure 9 –

σ = e2τ

∫ −∞
−∞

g(ε)
v(ε)2

d
δ(ε− εF )dε

= e2τg(εF )
v(εF )2

d

(24)
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2. Vk =
(2π)2

S
, g(k) =

S

π2
, g(ε) =

mS

π~2
, then n =

∫ εF

0

g(ε)dε = g(εF )εF .

σ = e2τg(εF )
v(εF )2

d

= e2τ
n

εF

m

m

v(εF )2

2

=
e2τn

m

(25)

This comes back to the Drude model result for conductivity.
3. τ imp ∝ T−5 and τph ∝ T−1. The Debye temperature is linked to the typical energy of the phonons.

Since phonons are vibration of the lattice, we can expect Debye temperature (phonon energy) to be
smaller for heavy materials (ΘPb,Z=82

D =105K, ΘBe,Z=4
D =1440K). Here for Na : ΘNa,Z=11

D =158K.
Resistivity can be written : ρ ∝ 1

σ ∝
1
τ ∝ T

5 in the case that conductivity is only limited by impurities.
Then in a log plot, the slope should be equal to 5 : log(ρ) = A+ 5T . This is the case here.

2.1.1 Electrical conductivity of graphene

1. Vk =
(2π)2

S
, g(k) =

S

π2
, g(ε)dε = g(k)d2k. From the dispersion relations ε(k) we find

dε

dk
= ~vF and

k =
|ε− εF |
~vF

. Then

g(ε) = g(k)2πk
dk

dε

=
S

2π2
2πk

1

~vF
=
S

π

|ε− εF |
~2v2

F

(26)

2.

−∂fFD(ε)

∂ε
= β

eβ(ε−µ)

(eβ(ε−µ) + 1)2

= β
1

(e
β
2 (ε−µ) + e−

β
2 (ε−µ))2

=
β

4ch2(β2 (ε− µ))

(27)

We will consider that v(ε) = vF and µ = εF in the range where −∂fFD(ε)
∂ε is non zero.

σ = e2τ

∫ −∞
−∞

g(ε)
v(ε)2

d

(
−∂fFD(ε)

∂ε

)
dε

=
e2τ

2

∫ −∞
−∞

S

π

|ε− εF |
~2v2

F

β

4ch2(β2 (ε− εF ))
dε

=
e2τSβ

8~2π

∫ −∞
−∞

|ε− εF |
ch2(β2 (ε− (εF ))

dε

(X = β
2 (ε− εF )) =

e2τSβ

8~2π

∫ −∞
−∞

2

β

|X|
ch2(X)

2

β
dX

=
e2τS

π~2
ln(2)

(28)

2.2 Thermal conductivity
1. At 1D, accordind to Maxwell-Boltzmann particle velocity distribution, we can write the mean square

velocity :
1

2
m < v2 >=

1

2
kBT so that v =

√
kBT

m

2. The energy is purely kinetic so that ε =
1

2
kBT so that the specific heat can be easily expressed :

Cv = dε
dT = 1

2kB . We can then write the variation of energy between time t and t+ τ , the time between
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2 collisions. During this time we can express the distance travelled by the electron : δx = vτ .

ε =
1

2
kBT

δε =
1

2
kB

∂T

∂x
δx

=
δx=vτ

Cv∇xTvτ

(29)

3. During a time τ , the same amount goes from left to right and from right to left : n− = n+ = n 1
2Svτ :

half the density goes left (hence the n/2 term), vτ being the distance traveled by the electron to reach
S from the left or right side of the section S.

4. The left and right electron do not have the same energy. The exchange of electrons from right and left
side is thus accompanied with a heat exchange Q.

Q = n+δε+ − n−δε−
= n

1

2
SvτCv∇xTvτ − n

1

2
SvτCv(−∇xT )vτ

= nSvτCv∇xTvτ
= nSv2τ2Cv∇xT

(30)

Thus ~jQ =
Q

Sτ
= nv2τCv∇xT and κ1D =

jQ
∇xT

= nv2τCv

Be careful here, at 3D ε = 3
2kBT so C3D

v = 3
2kB !

5. The mean free path is defined as the distance travelled by the electron without collision. We can thus
write : le = vτ . Since < v2 >= v2

x + v2
y + v2

z then the v2
1D = 1

3v
2
3D, thus we just have to replace v2 by

v2

3 in the expression of κ1D. Indeed only one third of the root mean velocity is going in the x direction
of the thermal gradient :

κ3D =
1

3
nv2τCv =

1

3
nvleCv

6.
κ

σ
=

1
3nvlec
ne2τ
m

=
1
3nvvτ

3kB
2 m

ne2τ
=
mv2

2

kB
e2

=
3KBT

2

kB
e2

=
3

2

(
KB

e

)2

T = LT

7. Ltheo =
3

2

(
KB

e

)2

=1.1 10−8W2A−2K−2

Lexp =
κ

σ
=3 10−8W2A−2K−2 The experiment value is close to the calculated one !

8. We no longer take Cv = 3
2kB but Cv = π2

2 nekB
T
TF

κ

σ
=
π2

3

(
KB

e

)2

T

Ltheo =
π2

3

(
KB

e

)2

This changes the previous result by a factor 2.2 !
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