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Careful : mistakes may subsist !

1 The free electron gas

1.1 The free electron gas in 2D

1.1.1 Fermi energy and density of states

1. The Fermi-Dirac distribution is fFD(✏, µ, T ) =
1

e
✏�µ
kBT + 1

=
1

e�(✏�µ) + 1

The Shrödinger equation for free electrons reads :
~P̂ 2

2m
 = ✏ thus eignenvalue is

✏ =
~2k2
2m

(1)

Figure 1 –

2. In a 2D square of dimension Lx and Ly along ~ux et ~uy respectively, electrons wavevectors take the form
~k = nx

2⇡

Lx
~ux + ny

2⇡

Ly
~uy with nx and ny integers. This comes from the fact that both wavefunction and

its derivative is null at the borders of the box.

Figure 2 –

3. To calculate the density of state in the k space, 2 steps :
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• Determine the surface occupied by 1 state in the k-space : Sk =
2⇡

Lx

2⇡

Ly
=

(2⇡)2

S
with S the surface

of the box in the real space (S=LxLy).
• Write the number of electron states in this volume : g2D(k)Sk = 2"# due to spin degeneracy. Then

g2D(k) =
S

2⇡2

4. To calculate the density of state in energy space, the previous 2 steps determination of g2D(k) is required.
We then write :

g2D(✏)d✏ = g2D(k)d2k (2)

We can write d2k = 2⇡kdk since the k-space filling is isotropic (sphere) in k space : ✏ =
~2k2
2m

. Using
d✏

dk
=

~2k
m

we can deduce :

g2D(✏) = g2D(k)2⇡k
dk

d✏

=
S

2⇡2
2⇡k

m

~2k
=

mS

⇡~2
= g0

(3)

5. Total number of electron can be calculated by summing over all energies the product of density of
electron state (number of state available at one energy : g2D(✏)) with the probability of occupying this
state (defined by Fermi-Dirac distribution) :

Ne =

Z 1

0
g2D(✏)fFD(✏, µ, T )d✏

=
T=0

Z ✏F

0
g2D(✏)d✏

=
T=0

g0✏F

(4)

using 1, we can write : kF =

r
2⇡

Ne

S

6. S = a2, Ne=0.2, ~=1.05 10�34, me=9.1 10�31, kB=1.38 10�23J.K�1 and 1J=6.2 1018eV

• ne =
Ne
S =1.36 1018m�2

• kF =
q
2⇡Ne

S =2.9 109m�2

• ✏F =
~2k2

f

2me
=0.3eV

• TF = ✏F
kB

=3780 K
The energy to add one electron is much higher than the thermal energy (TF»300K) so this cannot
be considered as a classical Boltzman gas.
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7. For T 6=0 :

Ne =

Z 1

0
g2D(✏)fFD(✏, µ, T )d✏

= g0

Z 1

0

1

e
✏�µ
kBT + 1

d✏

=
x=�(✏�µ)

g0
�

Z 1

��µ

dx

ex + 1

=
g0
�

Z 1

��µ

exdx

1 + e�x

=
g0
�

⇥
ln(1 + e�x)

⇤1
��µ

=
g0
�
ln(1 + e�µ)

=
g0
�
ln(e�µ(e��µ + 1))

= µg0 +
g0
�
ln(1 + e��µ)

=
✏F⇡µ>>��1

µg0 + g0kBTe
��µ

(5)

The hypothesis that ✏F ⇡ µ is reasonnable as it is exactly equal at T=0. Let’s see how µ changes as
function of temperature :

µ =
Ne

g0
� kBTe

� ✏F
kBT

=
eq.4

✏F (1�
kBT

✏F
e�

✏F
kBT

(6)

Since ✏F
kBT >10, the temperature correction (second term) is less than 0.001%. We then can confirm that

the chemical potential µ varies very slowly with the temperature and can be approximated to Fermi
energy ✏F . This is convenient for all the calculation using the Fermi-Dirac equation.

1.1.2 The specific heat

1. The total energy can be written as the sum over all energies of : i) the number of electrons states at
given energy, ii) the energy of these electrons and iii) the probability of occupying this state (defined
by Fermi-Dirac distribution) :

✏e =

Z 1

0
g2D(✏)fFD(✏, µ, T )✏d✏ (7)

2. Identifying h(✏) = ✏ then h0(✏) =
dh(✏)

d✏
= 1 and H(✏) =

Z ✏

0
h(✏0)d✏0 =

✏2

2
, we can apply Sommerfeld

development to eq. 7 :

✏e = g0
✏F
2

+ g0
⇡2

6
(kBT )

2 (8)

Using eq. 8, we can derive the specific heat :

Cv =
d✏e
dT

=
Ne⇡2

3✏F
k2BT

=
Ne⇡2

3
kB

T

TF
= �T

(9)

3. Summing both electronic and phononic contribution to the specific heat we get : Cv = Ce�

v + Cph
v =

�T + �T 3. Plotting
CV

T
= �+�T 2 as function of T 2 sould get a straight line with a slope corresponding

to � and the y-intercept corresponding to �.
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� =
Ne⇡2

3
kB

1

TF
. With a Fermi temperature around TF=3800 K (see 1.1.1.6), we get �theo=7mJ.mol�1.K�1.

�exp=23mJ.mol�1.K�1. This is the good order of magnitude. The factor 3 may be ascribed to the hea-
vier effective mass of electron. The notion of effective mass of electron will be further discussed in the
tight binding model.

1.2 The Rashba effect

1.2.1 Confinement effect on the spin-orbit coupling of a 2D electron gas

Figure 3 –

1. Hamiltonian is H =
p2

2m
. The general solution is of the form :  (~r,~�) = [A1e

i~k.~r + A2e
�i~k.~r] without

considering the spin. With the boundaries conditions and decomposing ~k = ~kk + ~k? :

 (z = 0) = 0 ) A1e
i~kk.~rk +A2e

�i~kk.~rk = 0

 (z = d) = 0 ) A1e
i~kk.~rkekzd +A2e

�i~kk.~rk]e
�kzd

= 0

) �A2e
�i~kk.~rkekzd +A2e

�i~kk.~rk]e
�kzd

= 0

) �A2e
�i~kk.~rk2isin(kzd) = 0

) kzd = n⇡, n 2 Z

(10)

Then
 (z) = Asin(

n⇡

d
)e�i~kk.~rk


�"
�#

�
(11)

2. Solving the Schrödinger equation :H n =
p2

2m
 n gives :

✏n =
~2
2m


kk +

⇣n⇡
d

⌘2�
(12)

3. First we need to calculate the 2D density of state in the k space :

• Determine the surface occupied by 1 state in the k-space : Sk =
2⇡

Lx

2⇡

Ly
=

(2⇡)2

S
with S the surface

of the box in the real space (S=LxLy).
• Write the number of electron states in this volume : g2D(k)Sk = 2"# due to spin degeneracy. Then

g2D(k) =
S

2⇡2

• n2D =
1

S

Z kF

0
g2D(k)d2k =

k2F
2⇡

Only the first band (n=1) is filled if ✏n=1(kk = kF ) < ✏n=0(k = 0) ) kF <
⇡

d
) n2D <

⇡

2d2
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Figure 4 –

4. Hamitonian writes :
H = �~µ. ~B

= �gµB
~S.
~v ⇥ ~E

c2

=
gµB

c2
~S.(

~~k
m⇤ ⇥ ~uz)

=
gµB~
m⇤c2

~S.(~k ⇥ ~uz)

=
gµB~
m⇤c2

(~S ⇥ ~k).~uz

=
gµB~
2m⇤c2

(~� ⇥ ~k).~uz

= ↵(~� ⇥ ~k).~uz

(13)

5. The Hamiltonian car be written in a matrix form :

H =
~2k2k
2m⇤


1 0
0 1

�
+ ↵�xky � ↵�ykx =

" ~2k2
k

2m⇤ ↵(ky + ikx)

↵(ky � ikx)
~2k2

k
2m⇤

#
(14)

det(H� �I) = 0

)

 
~2k2k
2m⇤ � ✏

!2

� ↵2(ky + ikx)(ky � ikx)

) ✏± =
~2k2k
2m⇤ ± ↵kk

(15)

The 1D dispersion along k and the 3D dispersion along a 2D plane are plotted in Fig. 5.

6. ✏� has a minimum when
@✏�
@kk

= 0 )
~2kkm
m⇤ = ↵ ) kkm =

m⇤↵

~2

Only the lower energy branch ✏� is filled when ✏�(kmax) = 0 ) kmax =
2↵m⇤

~2 . We can deduce the
density of state for this branch from question 3 : n2D±(k) =

1
2n2D(k) since only 1 electron per state is

allowed when spin degeneracy is lifted. Thus nc
2D(kmax) =

k2max

4⇡
.

7. Mixing up and down spins, with the linear kx and ky dependence induce a rotation of the spin direction
in the (x,y) plane, as represented in Fig. 6.

8. kkm = 0.012Å�1. Using expression from question 6 : ↵ =
~2kkm
m⇤ =1.8 10�11eV.m.

�✏(kF ) = ✏+(kF )� ✏�(kF ) = ↵kF=27meV with kF=0.15Å�1.Recheck the numbers...

5



Figure 5 –

Figure 6 –
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1.2.2 Hand-waving approach to the Rashba coupling : Symmetry effects on the electronic

energies in a solid

Let’s recall that ~k is related to the momentum and thus velocity, and thus the time derivative of the
position. Thus if we reverse time, t ! �t, then k ! �k. For spin, if we consider it as a loop current, then
"!#. For inversion, x ! �x, then k ! �k, but does not change the spin "!"

1. (a) T |~k, ">= |� ~k, #>
(b) If TRS is respected then [H, T ]=0 :

• HT |~k, ">= H|� ~k, #>= ✏�~k,#|�
~k, #>

• T H|~k, ">= T ✏~k,"|
~k, ">= ✏~k,"|�

~k, #>

Thus ✏~k," = ✏�~k,#

2. (a) I|~k, ">= |� ~k, ">
(b) If IS is respected then [H, I]=0 :

• HI|~k, ">= H|� ~k, ">= ✏�~k,"|�
~k, ">

• IH|~k, ">= I✏~k,"|
~k, ">= ✏~k,"|�

~k, ">

Thus ✏~k," = ✏�~k,"
3. If both TRS and IS are respected then : ✏~k," = ✏�~k,# = ✏~k,# : there is spin degeneracy.
4. See Fig. 7

Figure 7 –

1.3 Pauli Paramagnetism in the 3D electron gas

1. The Shrödinger equation for free electrons in presence of magnetic field can be written : H = ~P̂ 2

2me
�~µB.

Eigenfunction of free electron are also eigenfunction of this Hamiltonian, then only eigenvalue changes.
Writing the spin magnetic moment ~µ = �gµB

~S (and the projection µz = �gµB
~Sz), and ~B = B~uz we
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can see that :
✏" =

~2k2
2me

+ µBB

✏# =
~2k2
2me

� µBB
(16)

• Determine the volume occupied by 1 state in the k-space : Vk = 2⇡
Lx

2⇡
Ly

2⇡
Lz

= (2⇡)3

⌦ with ⌦ the surface
of the box in the real space (⌦=LxLyLz).

• Write the number of electron states in this volume : g"(k)Vk = 1". Then g"(k) =
⌦

(2⇡)3

• g"(✏)d✏ = g"(k)d3k. With d3k = 4⇡k2dk, eq. 16 and k =
q

2m
~2

p
✏" � µBB

Thus

g"(✏) =
V

4⇡2

✓
2m

~2

◆ 3
2 p

✏" � µBB

=
1

2
g"#(✏� µBB)

g#(✏) =
V

4⇡2

✓
2m

~2

◆ 3
2 p

✏# + µBB

=
1

2
g"#(✏+ µBB)

(17)

with g"#(✏) the density for B=0.
2. .

n" =

Z 1

�1
g"(✏)fFD(✏)d✏

=
T=0

Z ✏F

µBB
g"(✏)d✏

=
1

2

Z ✏F�µBB

0
g"#(✏)d✏

n# =

Z 1

�1
g#(✏)fFD(✏)d✏

=
T=0

Z ✏F

�µBB
g#(✏)d✏

=
1

2

Z ✏F+µBB

0
g"#(✏)d✏

(18)

�n = (n# � n")

=
1

2

Z ✏F+µBB

✏F�µBB
g"#(✏)d✏

(19)

3. µB=0.06meV.T�1, and typical magnetic field B=10T. Then µBB⇡1meV « ✏F ⇡5eV). Then we can
considerate the density of state constant near the Fermi level : g"#(✏) ⇡ g"#(✏F ) :

�n = g"#(✏F )µBB
M = µB�n

= g"#(✏F )µ
2
BB

� =
@M

@H

= µ0
@M

@B
= µ0g"#(✏F )µ

2
B

= µ0µ
2
B
3

2

n

✏F

(20)

Since for 3d free electrons :
n =

Z ✏F

0
g"#(✏)d✏

= (
2m

~2 ) 3 2
1

3⇡2
✏

3
2
F

=
2

3
✏F g"#(✏F )

(21)
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4. For Na : ne=2.68 1028m�3, ✏F=3.24eV and ⇢=0.971 g.cm�3

~=1.05 10�34, me=9.1 10�31, µ0 = 4⇡ 10�7m.T.A�1 and 1J=6.2 1018eV
�=8.4 10�6

�
4⇡⇢=6.67 10�6cm3.g�1 in agreement with the Fig 1.3 of the tutorial.

1.4 The free electron gas from 3D to 2D

1.4.1 Electron gas in 3D

1.  k(x, y, z) = e�i~k.~r. In a 3D box of dimension Lx, Ly and Lz, electrons wavevectors take the form
~k = nx

2⇡
Lx

~ux + ny
2⇡
Ly

~uy + nz
2⇡
Lz

~uz with nx, ny and nz 2 Z
2. See Fig. 8.

Figure 8 –

3. The volume occupied by 1 state in the k-space : Vk = 2⇡
Lx

2⇡
Ly

2⇡
Lz

= (2⇡)3

⌦ with ⌦ the surface of the box in
the real space (⌦=LxLyLz).
The number of electron states in this volume : g3D(k)Vk = 2"# due to spin degeneracy. Then g3D(k) =
⌦

4⇡3

g3D(✏)d✏ = g3D(k)d3k. With d3k = 4⇡k2dk, k =
q

2m
~2

p
✏ and @✏

@k = ~2k
m , we have : g3D(✏) = 1

⇡2

�
2m
~2

� 3
2
p
✏

4. n3D =
R kF

0 g3D(k)d3k =
R kF

0
⌦

4⇡3 4⇡k2dk = ⌦k3
F

2⇡2

n3D =
R ✏F
0 g3D(✏)d✏ =

R ✏F
0

1
⇡2

�
2m
~2

� 3
2
p
✏d✏ = 2

3⇡2

�
2m
~2

� 3
2 ✏

3
2
F

5. ✏F =
⇣

3⇡2

2

⌘ 2
3 ~2

2m ⇡7eV

1.4.2 Electron surface energy of a nearly 2D plate

1. DOS : g2D(✏) =
mS

⇡~2 = g0

Total energy at T=0 : Ee =

Z infty

0
✏g2D(✏)fFD(✏, µ, T )d✏ =

1

2
g0✏

2
F

Number of electrons at T=0 : Ne =

Z infty

0
g2D(✏)fFD(✏, µ, T )d✏ = g0✏F

Average energy per electron at T=0 :< Ee >=
Ee

Ne
=

1

2
✏F

2. sin(kz0) = sin(kzl) = 0 ) kz = n
⇡

l
. Here n>0 : since sin(�kzz) = �sin(kzz) : kz and �kz describe

the same state ! So we are restricted to only half a sphere in reciprocal space. Which hemisphere we
choose is nor relevant. At the base : kz = 0 )  (kz = 0) = 0 The electron at the base occupy now the
next available state at the Fermi level.
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3. Volume occupied by 1 state : Vk =
2⇡

Lx

2⇡

Ly

⇡

l
=

4⇡3

Sl

Number of electron occupying this state : g3D(k)0Vk = 2"# ) g3D(k)0 =
V

2⇡3
= 2g3D(k).

Since the DOS is multiplied by two, but we divide the sphere in 2 to have only hemisphere available, the
two factors 2 compensate one another : the fermi vector do not change (you can make the calculation
of kF and k0F to convince yourself by calculating the number of electron in both cases Ne).

4. �✏ = ✏F� < Ee >=
1

2
✏F

5. Number of electron at kz = 0 : N2D

Z kF

0
g2D(k)2⇡kdk =

S

2⇡
k2F =

S

⇡

m

~2 ✏F

6. �E = N2D�✏
�E

S
=

1

2⇡
k2F

1

2
✏F = f(kF )✏k with f(k) =

1

4⇡
k2F

1.4.3 Surface effects on the electron gas

1. Born Von Karman conditions implies :  =
1

p
V
ei

~k.~r

n(x, y, z) =
1

V

Z

k<kF

g(k)4⇡k2dk =
1

V

Z

k<kF

V

4⇡3
4⇡k2dk =

k3F
3⇡2

= n0

2. n(z) = n0 when 2kF z = 4.5 ) z =
2.25

kF
⇡ 2Å. The surface effects disappear for few layers deep.

2 Transport phenomena

2.1 Electrical conductivity of a metal

1.
� = e2⌧

Z �1

�1
g(✏)

v(✏)2

d

✓
�
@fFD(✏)

@✏

◆
d✏ (22)

@fFD(✏)

@✏
= ��

e�(✏�µ)

(e�(✏�µ) + 1)2
(23)

The result is plotted in Fig. 9. As we can see,
@fFD(✏)

@✏
=

T=0
�(✏� ✏F ). Then we can write :

Figure 9 –

� = e2⌧

Z �1

�1
g(✏)

v(✏)2

d
�(✏� ✏F )d✏

= e2⌧g(✏F )
v(✏F )2

d

(24)
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2. Vk =
(2⇡)2

S
, g(k) =

S

⇡2
, g(✏) =

mS

⇡~2 , then n =

Z ✏F

0
g(✏)d✏ = g(✏F )✏F .

� = e2⌧g(✏F )
v(✏F )2

d

= e2⌧
n

✏F

m

m

v(✏F )2

2

=
e2⌧n

m

(25)

This comes back to the Drude model result for conductivity.
3. ⌧ imp

/ T�5 and ⌧ph / T�1. The Debye temperature is linked to the typical energy of the phonons.
Since phonons are vibration of the lattice, we can expect Debye temperature (phonon energy) to be
smaller for heavy materials (⇥Pb,Z=82

D =105K, ⇥Be,Z=4
D =1440K). Here for Na : ⇥Na,Z=11

D =158K.
Resistivity can be written : ⇢ /

1
� /

1
⌧ / T 5 in the case that conductivity is only limited by impurities.

Then in a log plot, the slope should be equal to 5 : log(⇢) = A+ 5T . This is the case here.

2.1.1 Electrical conductivity of graphene

1. Vk =
(2⇡)2

S
, g(k) =

S

⇡2
, g(✏)d✏ = g(k)d2k. From the dispersion relations ✏(k) we find

d✏

dk
= ~vF and

k =
|✏� ✏F |

~vF
. Then

g(✏) = g(k)2⇡k
dk

d✏

=
S

2⇡2
2⇡k

1

~vF
=

S

⇡

|✏� ✏F |

~2v2F

(26)

2.

�
@fFD(✏)

@✏
= �

e�(✏�µ)

(e�(✏�µ) + 1)2

= �
1

(e
�
2 (✏�µ) + e�

�
2 (✏�µ))2

=
�

4ch2(�2 (✏� µ))

(27)

We will consider that v(✏) = vF and µ = ✏F in the range where �
@fFD(✏)

@✏ is non zero.

� = e2⌧

Z �1

�1
g(✏)

v(✏)2

d

✓
�
@fFD(✏)

@✏

◆
d✏

=
e2⌧

2

Z �1

�1

S

⇡

|✏� ✏F |

~2v2F
�

4ch2(�2 (✏� ✏F ))
d✏

=
e2⌧S�

8~2⇡

Z �1

�1

|✏� ✏F |

ch2(�2 (✏� (✏F ))
d✏

(X = �
2 (✏� ✏F )) =

e2⌧S�

8~2⇡

Z �1

�1

2

�

|X|

ch2(X)

2

�
dX

=
e2⌧S

⇡~2 ln(2)

(28)

2.2 Thermal conductivity

1. At 1D, accordind to Maxwell-Boltzmann particle velocity distribution, we can write the mean square

velocity :
1

2
m < v2 >=

1

2
kBT so that v =

r
kBT

m

2. The energy is purely kinetic so that ✏ =
1

2
kBT so that the specific heat can be easily expressed :

Cv = d✏
dT = 1

2kB . We can then write the variation of energy between time t and t+ ⌧ , the time between
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2 collisions. During this time we can express the distance travelled by the electron : �x = v⌧ .

✏ =
1

2
kBT

�✏ =
1

2
kB

@T

@x
�x

=
�x=v⌧

CvrxTv⌧

(29)

3. During a time ⌧ , the same amount goes from left to right and from right to left : n� = n+ = n 1
2Sv⌧ :

half the density goes left (hence the n/2 term), v⌧ being the distance traveled by the electron to reach
S from the left or right side of the section S.

4. The left and right electron do not have the same energy. The exchange of electrons from right and left
side is thus accompanied with a heat exchange Q.

Q = n+�✏+ � n��✏�

= n
1

2
Sv⌧CvrxTv⌧ � n

1

2
Sv⌧Cv(�rxT )v⌧

= nSv⌧CvrxTv⌧
= nSv2⌧2CvrxT

(30)

Thus ~jQ =
Q

S⌧
= nv2⌧CvrxT and 1D =

jQ
rxT

= nv2⌧Cv

Be careful here, at 3D ✏ = 3
2kBT so C3D

v = 3
2kB !

5. The mean free path is defined as the distance travelled by the electron without collision. We can thus
write : le = v⌧ . Since < v2 >= v2x + v2y + v2z then the v21D = 1

3v
2
3D, thus we just have to replace v2 by

v2

3 in the expression of 1D. Indeed only one third of the root mean velocity is going in the x direction
of the thermal gradient :
3D =

1

3
nv2⌧Cv =

1

3
nvleCv

6.


�
=

1
3nvlec
ne2⌧
m

=
1
3nvv⌧

3kB
2 m

ne2⌧
=

mv2

2

kB
e2

=
3KBT

2

kB
e2

=
3

2

✓
KB

e

◆2

T = LT

7. Ltheo =
3

2

✓
KB

e

◆2

=1.1 10�8W2A�2K�2

Lexp =


�
=3 10�8W2A�2K�2 The experiment value is close to the calculated one !

8. We no longer take Cv = 3
2kB but Cv = ⇡2

2 nekB
T
TF



�
=

⇡2

3

✓
KB

e

◆2

T

Ltheo =
⇡2

3

✓
KB

e

◆2

This changes the previous result by a factor 2.2 !

3 Crystalline Solids

3.1 Rectangular lattice

See Fig.10. in the case A=B, The conventional rectangular contains 2 primitive unit cells.

3.2 Cubic lattice

• Li : Motif has 2 Li atoms : (0,0,0) and ( 12 , 12 , 12 ). The cube is not a primitive cell. The mode is body
centered I. There is 1 motif per unit cell.

• CsCl : Motif has 2 atoms : Cs (0,0,0) and Cl (12 , 12 , 12 ). The cube is a primitive cell. There is 1 motif per
unit cell.

• BaTiO3 : Motif has 5 atoms : Ba (0,0,0), Ti ( 12 , 12 , 12 ), O (12 , 12 ,0), ( 12 ,0, 12 ) and (0,12 , 12 ). The cube is a
primitive cell. There is 1 motif per unit cell.

12



Figure 10 –

3.3 Hexagonal lattice

1. Different primitive unit cells are represented in Fig.11 (not shaded).
2. The rectangular lattice is represented in Fig.Fig33 (Left figure, shaded surface). There is 2 unit cell in

this conventional cell (multiplicity = 2). |~aR| = a and |~bR| = 2asin(60) =
p
3a.

Figure 11 –

3.4 Honeycomb lattice

1. The Bravais lattice is hexagonal, and the motif is C (0,0) and C ( 13 , 13 )
2. See Fig. 12.
3. |~a| = |~b| = 2lsin(60) =

p
3l

4. 3 families of rows are represented in ?? (right figure). The distance between rows for the example in
blue is d = 2lsin(60) =

p
3l

3.5 Reciprocal lattice

3.5.1 2D Rectangular lattice

1.
V = ~a.(~b⇥ ~c) = abc

~a⇤ = 2⇡
~b⇥ ~c

V
=

2⇡

a
~ua

~b⇤ = 2⇡
~c⇥ ~a1
V

=
2⇡

b
~ub

~c⇤ = 2⇡
~a⇥~b

V
=

2⇡

c
~uc

(31)
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Figure 12 –

Figure 13 –
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2. Geometrical construction is plotted Fig. 14.
~a0 = 1

2~a�
1
2
~b and ~b0 = 1

2~a+ 1
2
~b. Then ~a⇤0 = 2⇡

a ~ua �
2⇡
a ~ub = ~a⇤ �~b⇤ and ~b⇤0 = 2⇡

a ~ua +
2⇡
a ~ub = ~a⇤ +~b⇤

Figure 14 –

3.5.2 Diffraction on the honeycomb lattice

1. The Bravais lattice is hexagonal, and the motif is C (0,0) and C ( 13 , 13 ). According to Fig. 12, ~a =

(a cos(30), a sin(30), 0) = (
p
3
2 a, 1

2a, 0) and ~b = (a cos(30),�a sin(30), 0) = (
p
3
2 a,� 1

2a, 0) and ~c =
(0, 0, c).

V = ~a.(~b⇥ ~c) =

p
3

2
a2c

~a⇤ = 2⇡
~b⇥ ~c

V
=

2⇡
p
3a

2

4
1
p
3
0

3

5

~b⇤ = 2⇡
~c⇥ ~a1
V

=
2⇡
p
3a

2

4
1

�
p
3

0

3

5

~c⇤ = 2⇡
~a⇥~b

V
=

2⇡

c
~uc

(32)

The reciprocal lattice is then hexagonal.
2.

S(h, k, l) =
2X

i=1

fi(q)e
�i2⇡(hxi+kyi+lzi)

= fC(q)e
�i2⇡(h0+k0+l0) + fC(q)e

�i2⇡(h 1
3+k 1

3+l0)

= fC(q)
h
1 + e�i 2⇡

3 (h+k)
i

(33)

• if h+k=3n : S(h, k, l) = 2fC(q), |S(h, k, l)|2 = 4fC(q)2

• if h+k=3n+1 : S(h, k, l) = fC(q)
h
1
2 + i

p
3
2

i
, |S(h, k, l)|2 = fC(q)2

• if h+k=3n+2 : S(h, k, l) = fC(q)
h
1
2 � i

p
3
2

i
, |S(h, k, l)|2 = fC(q)2

3.6 Reciprocal lattice and diffraction

1. The reciprocal lattice of a tetragonal is tetragonal.

V = ~a.(~b⇥ ~c) = a2c

~a⇤ = 2⇡
~b⇥ ~c

V
=

2⇡

a
~ua

~b⇤ = 2⇡
~c⇥ ~a1
V

=
2⇡

b
~ub

~c⇤ = 2⇡
~a⇥~b

V
=

2⇡

c
~uc

(34)
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2. The Bragg law : 2dsin(✓) = �, with d = aq
h2+k2+ a2

c2
l2

. Then :

2✓ = 2arcsin

 
�
q

h2+k2+ a2

c2
l2

2a

!

3. With :
mn=1.67 10�27kg
~=1.05 10�34J.s
1J=6.2 1018eV
kB=1.38 10�23J.K�1

✏ = kBT = 38meV

✏ =
~2
2mn

✓
2⇡

�

◆2

) � = 2⇡
~

p
2mn✏

= 1.2Å

The experiment was done an a thermal diffractometer : ✏=15-100meV (� = 2.5- 0.9Å). Cold diffracto-
meter are used to look at small angles (large q values) for magnetic peaks for example : ✏=0.1-15meV
(� = 27-2.5Å),

4. 2✓111 = 2arcsin

 
�
q

1+1+ a2

c2

2a

!
= 2arcsin

 
1.2

q
2+ 4.87342

3.31032

2⇥4.8734

!
= 29.1o

2✓210 = 2arcsin
⇣

�
p
22+1+0
2a

⌘
= 31.96o 2✓200 = 2arcsin

⇣
�
p
22+0+0
2a

⌘
= 31.96o

3.7 Bravais lattice and structure factor of MnF2

Figure 15 –

1.
2. There are 2 MnF2 formula per unit cell.
3.

S(h, k, l) =
2X

i=1

fi(q)e
�i2⇡(hxi+kyi+lzi)

= fMn

h
1 + e�i⇡(h+k+l)

i

+fF
h
e�i2⇡u(h+k) + ei2⇡u(h+k) + e�i2⇡u(h�k)e�i⇡(h+k+l) + ei2⇡u(h�k)e�i⇡(h+k+l)

i

= fMn

h
1 + e�i⇡(h+k+l)

i
+ 2fF

h
cos(2⇡u(h+ k)) + e�i⇡(h+k+l)cos(2⇡u(h� k))

i

(35)

with g(h, k, l) = e�i⇡(h+k+l).
4. if h+k+l odd, g(h,k,l)=-1, then S(h, k, l) = 2fF [cos(2⇡u(h+ k))� cos(2⇡u(h� k))]. If h or k is null

then S(h, k, l) = 0.
5. I(1,0,0) being null, the first peak should be I(1,1,0) as observed.
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3.7.1 X-ray diffraction and measure of the lattice parameter

1.
S(2,0,2)
S(3,1,1) =

2fMn + 4fF cos(4⇡u)

2fF [cos(8⇡u)� cos(4⇡u)]

=
fMn + 2fF cos(4⇡u)

fF [cos(8⇡u)� cos(4⇡u)]

=
fMn + 2fF cos(4⇡u)

fF [cos(8⇡u)� cos(4⇡u)]

=
x=4⇡u

fMn

fF
+ 2cos(x)

[cos(2x)� cos(x)]

(36)

2. Be careful, what we measure is I = |S(h, k, l)|2, and for powder, you need to take into account the
multiplicity ! So I(2,0,2)

I(3,1,1) =
m202|S(2,0,2)|2
m311|S(3,1,1)|2 . Then from this ratio you can determine the S(2,0,2)

S(3,1,1)=1.22.
From the graph, f(x)=1.2 for x=3.9 so u=0.31.

3. �u
u = 0.01 )

�x
x = �u

u ) �x = 0.01x = 0.04

So for a variation of % in x, 1<f(x)<1.5 and 1< I(2,0,2)
I(3,1,1)<2.25. This ration is very sensitive to the position

of F atoms.

3.7.2 Neutron scattering and magnetic structure

1.

S(h, k, l)m =
2X

i=1

fi(q)e
�i2⇡(hxi+kyi+lzi)

= fMn" + fMn#e
�i⇡(h+k+l)

+fF
h
e�i2⇡u(h+k) + ei2⇡u(h+k) + e�i2⇡u(h�k)e�i⇡(h+k+l) + ei2⇡u(h�k)e�i⇡(h+k+l)

i

= fMn"

h
1� e�i⇡(h+k+l)

i
+ 2fF

h
cos(2⇡u(h+ k)) + e�i⇡(h+k+l)cos(2⇡u(h� k))

i

(37)

Since fMn" = �fMn#.
2. With fMn" 6= �fMn#, there is no longer extinction for h+k+l odd and h or k null.
3. At low temperature, magnetic order breaks the extinction rule : (1,0,0) and (2,0,1) are now allowed and

we can see them.
4. If moments are along c, then we cannot see any magnetic peak for ~q along c, like (0,0,1). This what is

observed.

4 The band theory of solids

4.1 Tight binding in the one-dimensional atomic chain

To be completed...

4.2 Peierls instability

1. We only consider overlap of wavefunction between first neighbours. Closers atoms are thus expected to
have a larger overlap : 1 + ⌘ and most distant one a reduced overlap (1� ⌘). The chain period is then
2a and the Brillouin zone is limited to [� ⇡

2a : ⇡
2a ].

2. From translational symmetry :

17



�2m(x+ 2a) = �0(x+ 2a� 2ma) = �0(x+ 2(m� 1)a) = �2m�2(x)
�2m+1(x+ 2a) = �0(x+ 2a� (2m+ 1)a) = �0(x+ (2m� 1)a) = �2m�1(x)

 (x+ 2a) =
X

m

↵m�2m(x+ 2a) + �m�2m+1(x+ 2a)

=
X

m

↵m�2m�2(x) + �m�2m�1(x)

=
m0=m�1

X

m0

↵m0+1�2m”(x) + �m0+1�2m0+1(x)

(38)

From Bloch theorem :
 (x) = u(x)eikx with u(x+ 2a) = u(x)
Then  (x+ 2a) =  (x)ei2ka

Combining the consequences of translationnal symmetry and Bloch theorem, we thus have by identifi-
cation :
↵m+1 = ei2ka↵m and ↵m+1 = ei2ka�m

Thus ↵m = ei2mka↵0 and ↵m = ei2mka�0

3.
< �2n|H| k > = ✏k < �0| k >= ✏ke

i2nka↵0

=
X

m

↵m < �2n|H|�2m > +�m < �2n|H|�2m+1 >

= ↵n✏0 + �0e
i2nka(�t(1� ⌘)) + �0e

i2(n�1)ka(�t(1 + ⌘))
) ✏k↵0 + �0

⇥
t(1� ⌘) + t(1 + ⌘)e�i2ka

⇤
= 0

(39)

< �2n+1|H| k > = ✏k < �0| k >= ✏ke
i2nka�0

=
X

m

↵m < �2n+1|H|�2m > +�m < �2n+1|H|�2m+1 >

= ↵0e
i2nka(�t(1� ⌘)) + ↵0e

i2(n+1)ka(�t(1 + ⌘)) + �n✏0
) ✏k�0 + ↵0

⇥
t(1� ⌘) + t(1 + ⌘)ei2ka

⇤
= 0

(40)

We can thus write :


✏k
⇥
t(1� ⌘) + t(1 + ⌘)e�i2ka

⇤
⇥
t(1� ⌘) + t(1 + ⌘)ei2ka

⇤
✏k

� 
↵0

�0

�
=


0
0

�

) ✏2k � t2
⇥
(1� ⌘) + (1 + ⌘)e�i2ka

⇤ ⇥
(1� ⌘) + (1 + ⌘)ei2ka

⇤
= 0

) ✏2k � t2
⇥
(1� ⌘)eika + (1 + ⌘)e�ika

⇤ ⇥
(1� ⌘)e�ika + (1 + ⌘)eika

⇤
= 0

) ✏2k � t2 [2cos(ka) + 2i⌘sin(ka)] [2cos(ka)� 2i⌘sin(ka)] = 0

) ✏±k =
k!0

±2t
p
cos2(ka) + ⌘2sin2(ka)

(41)

To plot it, we can see that ✏+(k = 0) = 2t, ✏�(k = 0) = �2t, ✏+(k =
2⇡

a
) = 2t⌘, ✏�(k =

2⇡

a
) = �2t⌘.

Also ✏± = ±2t


1�

1

2
k2a2

�
. The plot is represented in Fig. 16.

4. If only one electron occupy each atomic orbital, the the band is half filled : the last occupied state is at
✏ = �2t⌘. The system is thus an insulator.

5. Let’s calculate the DOS :
• Volume occupied by 1 state in the k-space : Vk =

2⇡

Lx

• Number of electron states in this volume : g1D(k)Vk = 2"# : g1D(k) =
Lx

⇡
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Figure 16 –

E1 =

Z kF

�kF

✏kg1D(k)dk

=
Lx

⇡

Z ⇡
2a

� ⇡
2a

�2t
p
cos2(ka) + ⌘2sin2(ka)dk

= �
4tLx

⇡

Z ⇡
2a

0

p
cos2(ka) + ⌘2sin2(ka)dk

= �
4tLx

⇡

Z ⇡
2a

0

p
1 + (⌘2 � 1)sin2(ka)dk

= �
4tLx

a⇡

Z ⇡
2

0

p
1 + (⌘2 � 1)sin2(x)dx

= �
4tLx

a⇡


1 +

⌘2

2

✓
ln(

4

⌘
)�

1

2

◆�

(42)

6. E1 � E0 = E1 � E1(⌘ = 0) = �
2tLx⌘2

a⇡


ln(

4

⌘
)�

1

2

�
. This is favorable when E1 � E0 < 0, thus when

⌘ < 4e
1
2

7. Conductivity perpendicular to the chains is 5 order of magnitude weaker than along the chains : we
can consider this system as 1D. dz2 orbitals have a weak overlap. Above 150K, the thermal agitation is
greater than the energy gain, and below 150K, the gap opens and KCP becomes insulating.

4.3 Square lattice in 2D

1. From Bloch theorem we know

 (x+ a, y) = u(x, y)eikxa (x, y)

=
X

m,n

cm,n�m,n(x+ a, y)

=
X

m,n

cm,n�m�1,n(x, y)

=
m0=m�1

X

m0,n

cm0+1,n�m0,n(x, y)

(43)

Thus cm+1,n = cm,ne
ikxa ) cm,n = c0,ne

imkxa. By extension : cm,n = c0,0e
i(mkxa+nky)a

2. Voir Fig. 17
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Figure 17 –

3.

< �↵,� |H| k > = ✏k < �↵,� | k >= ✏ke
i(↵kx+�ky)c0,0

=
X

m,n

c0,0e
i(mkx+nky) < �↵,� |H|�m,n >

= c0,0e
ia(↵kx+�ky)✏0 + c0,0e

ia((↵�1)kx+�ky)(�t) + c0,0e
ia((↵+1)kx+�ky)(�t)

+c0,0e
ia(↵kx+(��1)ky)(�t) + c0,0e

ia(↵kx+(�+1)ky)(�t)
= c0,0e

i(↵kx+�ky)
⇥
eiakx + e�iakx + eiaky + e�iaky

⇤

) ✏k = �2t [cos(kxa) + cos(kya)]

(44)

The bandwidth is 8t (see Fig 18).

Figure 18 –

4. See Fig 19
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Figure 19 –

5. • The band minimum is at kx = ky = 0.

m⇤(0, 0) = ~2

@2✏

@k2

��1

kx!0,ky=0

= ~2

@2(�2t(cos(kxa) + 1))

@k2

��1

kx!0,ky=0

= ~2
⇥
2ta2cos(kxa)

⇤�1

kx!0,ky=0

=
~2
2ta2

(45)

Since the mass is positive, this is considered as an electron.
For the density of state, we know that g2D(k) = S

2⇡2 .

✏(k) =
k!0

�2t


2�

1

2
k2xa

2
�

1

2
k2ya

2

�

=
k!0

�4t+ ta2
⇥
k2x + k2y

⇤

d✏
dk =

k!0
�2ta2k

g2D(✏) =
k!0

g2D(k)2⇡k
dk

d✏

=
k!0

S

2⇡ta2

=
k!0

S

⇡~2m
⇤(0, 0)

(46)
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• The band maximum at kx = ky = ⇡
a .

m⇤(
⇡

a
,
⇡

a
) = ~2


@2✏

@k2

��1

kx!⇡
a ,ky=⇡

a

= ~2

@2(�2t(cos(kxa) + 1))

@k2

��1

kx!⇡
a ,ky=⇡

a

= ~2
⇥
2ta2cos(kxa)

⇤�1

kx!⇡
a ,ky=⇡

a

=
~2
2ta2

(47)

Since the mass is negative, this is considered as a hole.
For the density of state, we know that g2D(k) = S

2⇡2 .

✏(k) =
k,ky!⇡

a

�2t
h
cos((

⇡

a
+ (kx �

⇡

a
))a) + cos((

⇡

a
+ (ky �

⇡

a
))a)

i

=
k,ky!⇡

a

�2t
h
�cos((kx �

⇡

a
)a)� cos((ky �

⇡

a
)a)
i

=
k,ky!⇡

a

2t


2�

1

2
(kx �

⇡

a
)2a2 �

1

2
(ky �

⇡

a
)2a2

�

=
k,ky!⇡

a

4t� ta2
h
(kx �

⇡

a
)2 + (kx �

⇡

a
)2
i

d✏

dk
=

k,ky!⇡
a

�2ta2(kx �
⇡

a
)

g2D(✏) =
k,ky!⇡

a

g2D(k)2⇡k
dk

d✏

=
k,ky!⇡

a

�
S

2⇡ta2

=
k,ky!⇡

a

S

⇡~2m
⇤(
⇡

a
,
⇡

a
)

(48)

6. The function g(✏) = 2
⇡ g0ln(rac16t✏) is plotted in Fig 19. We can observe a singularity for ✏ = 0 : it is

the Van Hove singularity, present becasue of the saddle point in the dispersion.

Figure 20 –

7. If the atoms are monovalent, 1 electron occupy the surface S = a2. So 1 =

Z kf

0
g2D(k)dSk =

S

2⇡2
SF =

a2

2⇡2
SF . Then Fermi surface SF = ⇡2

2a2 = ( ⇡p
2a
)2. So the surface is a square of side ⇡p

2a
: this correspond

to the Fermi surface for ✏ = 0, exactly on the Van Hove singularity.
8. In this case, the cuprate fall in the example treated before : it should be metallic. However in reality,

this is an insulator, due to the Coulombic repulsion, preventing double occupation of on site, creating
a gap.
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5 Semiconductors

5.1 Resistivity of intrinsic semiconductors

• n2
i (T ) = nc(T )nh(T ) = NcNhe

��(✏c�✏v) = NcNhe
��✏g

• ni(T ) =
p
NcNhe

��
✏g
2 and ni(T ) = Nce

��(✏c�µ) so µ =
✏g
2

+
kBT

2
ln(

Nh

Nc
)

1. nGe
i =

p
ncnh =

p
NcNhe��✏g = N0

r
(
mcmh

m2
e

)
3
2 e��✏g = 2.4e25

q
(0.55 ⇤ 0.29)

3
2 e�0.67/0.025 = 9e18e�.m�3 =

9 1012e�.cm�3. For Cu (1 electron per Å3 for the order of magnitude) : nCu = 8.5 28e�.m�3 =
8.5 1022e�.cm�3

2. �Ge = nGeµGee = nGe
c µGe

e e + nGe
h µGe

h e = nGe
i e(µGe

e + µGe
h ) = 0.8C.V �1.s�1.m�1 = 0.8⌦�1.m�1. For

Cu :
�Cu = nCuµCue = 6 107C.V �1.s�1.m�1 = 6 107⌦�1.m�1

Germanium is then a bad conductor.
3. �Ge

/ nGe
i µGe

/ �� 3
2 e��

✏g
2 T� 3

2 / e��
✏g
2 and ⇢Ge

/ e�
✏g
2 . For small value of � (large T), resistivity is

linear in �. It explains the curve 1. To extract the gap, we need to plot log(⇢) as function of T�1 and
the slope will be ✏g

2kB
.

5.2 Resistivity of extrinsic semiconductors

1. See Fig. 21

Figure 21 –

2. Ga atoms give holes (take electrons) and Sb or As gives electrons. See Fig. 22.
3. For n type :

nc(T ) = ni(T ) + nd(T ) = nh(T ) + nd(T ) =
nd>>nh

nd

For p type :
nh(T ) = ni(T ) + na(T ) = nc(T ) + na(T ) =

na>>nc

na

4. kBT >> ✏c � ✏d ) nd(T ) = Nd : totally ionized.
kBT << ✏g ) nd >> nh

So we find : � / Ndeµ / NdT
3
2 and thus, ln(⇢) / ln(�)

5. See Fig. 23
6. For doped Ge, we can see that the slope changes at a certain temperature, corresponding to a change

from intrinsic to extrinsic behavior, when kBT reaches ✏g/2.
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Figure 22 –

Figure 23 –
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5.3 p-n junctions

1. Electron from the conduction band of the p side close to the junction will naturally go to the n region
since the conduction band there is lower in energy (first principel : minimization of energy). Symme-
trically, holes in the valence band of the n side will go the the p side. Thus in the region between, no
charge carrier remains : they either go to the n region (electrons) or the p region (holes). This region is
then depleted and called depletion region.

2. An equivalent model to driving negative charges (electrons) on the right n region, and positives charges
(holes) on the left p region is tu put an electric field so the charges undergo the force ~F = q ~E. The
electric field goes then from n to the p region. We can the consider that the electric field originates from
a potiential difference Vd such as ~E = �rVd, with Vd = V n

� V p > 0.
3. Thermal scattering :

- electrons (e�) go from ✏nc to ✏pc
- holes (h+) go from ✏pv to ✏nv
Conduction :
- electrons (e�) go from ✏pc to ✏nc
- holes (h+) go from ✏nv to ✏pv

At equilibrium, I0Total = 0 ) I0P!N + I0N!P = 0 ) I0P!N = �I0N!P = I0e
� eVd

kBT

4. By applying an external tension U , we modify the potential difference Vd. The new potential difference
is then : V 0 = Vd � U . We can thus write :
IP!N = I0e

� eV 0
kBT = I0e

� eVd
kBT e

eU
kBT = I0P!Ne

eU
kBT

ITotal = IP!N + IN!P = I0P!Ne
eU

kBT + I0N!P = I0P!N

⇣
e

eU
kBT � 1

⌘
. The plot Fig. 24 show the current

(in unit of I0) as function of U (in mV) at room temperature. We see that the current is measurable
only for positive tension U : this is the behavior of a diode.

Figure 24 –

6 Superconductivity

6.1 Thermodynamics

To be completed...
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6.1.1 Magnetic field driven transition at T=0

To be completed...

6.1.2 H-T phase diagram

To be completed...

6.1.3 Specific heat

To be completed...

6.2 Magnetic field penetration into a type-I superconducting plate

To be completed...
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